MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5 Structured version   Visualization version   Unicode version

Theorem peano5 7089
Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43, except our proof does not require the Axiom of Infinity. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as theorem findes 7096. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
peano5  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Distinct variable group:    x, A

Proof of Theorem peano5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldifn 3733 . . . . . 6  |-  ( y  e.  ( om  \  A
)  ->  -.  y  e.  A )
21adantl 482 . . . . 5  |-  ( ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )  /\  y  e.  ( om  \  A
) )  ->  -.  y  e.  A )
3 eldifi 3732 . . . . . . . . . 10  |-  ( y  e.  ( om  \  A
)  ->  y  e.  om )
43adantl 482 . . . . . . . . 9  |-  ( (
(/)  e.  A  /\  y  e.  ( om  \  A ) )  -> 
y  e.  om )
5 elndif 3734 . . . . . . . . . 10  |-  ( (/)  e.  A  ->  -.  (/)  e.  ( om  \  A ) )
6 eleq1 2689 . . . . . . . . . . . 12  |-  ( y  =  (/)  ->  ( y  e.  ( om  \  A
)  <->  (/)  e.  ( om 
\  A ) ) )
76biimpcd 239 . . . . . . . . . . 11  |-  ( y  e.  ( om  \  A
)  ->  ( y  =  (/)  ->  (/)  e.  ( om  \  A ) ) )
87necon3bd 2808 . . . . . . . . . 10  |-  ( y  e.  ( om  \  A
)  ->  ( -.  (/) 
e.  ( om  \  A
)  ->  y  =/=  (/) ) )
95, 8mpan9 486 . . . . . . . . 9  |-  ( (
(/)  e.  A  /\  y  e.  ( om  \  A ) )  -> 
y  =/=  (/) )
10 nnsuc 7082 . . . . . . . . 9  |-  ( ( y  e.  om  /\  y  =/=  (/) )  ->  E. x  e.  om  y  =  suc  x )
114, 9, 10syl2anc 693 . . . . . . . 8  |-  ( (
(/)  e.  A  /\  y  e.  ( om  \  A ) )  ->  E. x  e.  om  y  =  suc  x )
1211adantlr 751 . . . . . . 7  |-  ( ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )  /\  y  e.  ( om  \  A
) )  ->  E. x  e.  om  y  =  suc  x )
1312adantr 481 . . . . . 6  |-  ( ( ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )  /\  y  e.  ( om  \  A
) )  /\  (
( om  \  A
)  i^i  y )  =  (/) )  ->  E. x  e.  om  y  =  suc  x )
14 nfra1 2941 . . . . . . . . . . 11  |-  F/ x A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
)
15 nfv 1843 . . . . . . . . . . 11  |-  F/ x
( y  e.  ( om  \  A )  /\  ( ( om 
\  A )  i^i  y )  =  (/) )
1614, 15nfan 1828 . . . . . . . . . 10  |-  F/ x
( A. x  e. 
om  ( x  e.  A  ->  suc  x  e.  A )  /\  (
y  e.  ( om 
\  A )  /\  ( ( om  \  A
)  i^i  y )  =  (/) ) )
17 nfv 1843 . . . . . . . . . 10  |-  F/ x  y  e.  A
18 rsp 2929 . . . . . . . . . . 11  |-  ( A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A )  ->  ( x  e. 
om  ->  ( x  e.  A  ->  suc  x  e.  A ) ) )
19 vex 3203 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
2019sucid 5804 . . . . . . . . . . . . . . . . 17  |-  x  e. 
suc  x
21 eleq2 2690 . . . . . . . . . . . . . . . . 17  |-  ( y  =  suc  x  -> 
( x  e.  y  <-> 
x  e.  suc  x
) )
2220, 21mpbiri 248 . . . . . . . . . . . . . . . 16  |-  ( y  =  suc  x  ->  x  e.  y )
23 eleq1 2689 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  suc  x  -> 
( y  e.  om  <->  suc  x  e.  om )
)
24 peano2b 7081 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  om  <->  suc  x  e. 
om )
2523, 24syl6bbr 278 . . . . . . . . . . . . . . . . 17  |-  ( y  =  suc  x  -> 
( y  e.  om  <->  x  e.  om ) )
26 minel 4033 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  y  /\  ( ( om  \  A
)  i^i  y )  =  (/) )  ->  -.  x  e.  ( om  \  A ) )
27 neldif 3735 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  om  /\  -.  x  e.  ( om  \  A ) )  ->  x  e.  A
)
2826, 27sylan2 491 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  om  /\  ( x  e.  y  /\  ( ( om  \  A
)  i^i  y )  =  (/) ) )  ->  x  e.  A )
2928exp32 631 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  om  ->  (
x  e.  y  -> 
( ( ( om 
\  A )  i^i  y )  =  (/)  ->  x  e.  A ) ) )
3025, 29syl6bi 243 . . . . . . . . . . . . . . . 16  |-  ( y  =  suc  x  -> 
( y  e.  om  ->  ( x  e.  y  ->  ( ( ( om  \  A )  i^i  y )  =  (/)  ->  x  e.  A
) ) ) )
3122, 30mpid 44 . . . . . . . . . . . . . . 15  |-  ( y  =  suc  x  -> 
( y  e.  om  ->  ( ( ( om 
\  A )  i^i  y )  =  (/)  ->  x  e.  A ) ) )
323, 31syl5 34 . . . . . . . . . . . . . 14  |-  ( y  =  suc  x  -> 
( y  e.  ( om  \  A )  ->  ( ( ( om  \  A )  i^i  y )  =  (/)  ->  x  e.  A
) ) )
3332impd 447 . . . . . . . . . . . . 13  |-  ( y  =  suc  x  -> 
( ( y  e.  ( om  \  A
)  /\  ( ( om  \  A )  i^i  y )  =  (/) )  ->  x  e.  A
) )
34 eleq1a 2696 . . . . . . . . . . . . . 14  |-  ( suc  x  e.  A  -> 
( y  =  suc  x  ->  y  e.  A
) )
3534com12 32 . . . . . . . . . . . . 13  |-  ( y  =  suc  x  -> 
( suc  x  e.  A  ->  y  e.  A
) )
3633, 35imim12d 81 . . . . . . . . . . . 12  |-  ( y  =  suc  x  -> 
( ( x  e.  A  ->  suc  x  e.  A )  ->  (
( y  e.  ( om  \  A )  /\  ( ( om 
\  A )  i^i  y )  =  (/) )  ->  y  e.  A
) ) )
3736com13 88 . . . . . . . . . . 11  |-  ( ( y  e.  ( om 
\  A )  /\  ( ( om  \  A
)  i^i  y )  =  (/) )  ->  (
( x  e.  A  ->  suc  x  e.  A
)  ->  ( y  =  suc  x  ->  y  e.  A ) ) )
3818, 37sylan9 689 . . . . . . . . . 10  |-  ( ( A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
)  /\  ( y  e.  ( om  \  A
)  /\  ( ( om  \  A )  i^i  y )  =  (/) ) )  ->  (
x  e.  om  ->  ( y  =  suc  x  ->  y  e.  A ) ) )
3916, 17, 38rexlimd 3026 . . . . . . . . 9  |-  ( ( A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
)  /\  ( y  e.  ( om  \  A
)  /\  ( ( om  \  A )  i^i  y )  =  (/) ) )  ->  ( E. x  e.  om  y  =  suc  x  -> 
y  e.  A ) )
4039exp32 631 . . . . . . . 8  |-  ( A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A )  ->  ( y  e.  ( om  \  A
)  ->  ( (
( om  \  A
)  i^i  y )  =  (/)  ->  ( E. x  e.  om  y  =  suc  x  ->  y  e.  A ) ) ) )
4140a1i 11 . . . . . . 7  |-  ( (/)  e.  A  ->  ( A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A )  ->  ( y  e.  ( om  \  A
)  ->  ( (
( om  \  A
)  i^i  y )  =  (/)  ->  ( E. x  e.  om  y  =  suc  x  ->  y  e.  A ) ) ) ) )
4241imp41 619 . . . . . 6  |-  ( ( ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )  /\  y  e.  ( om  \  A
) )  /\  (
( om  \  A
)  i^i  y )  =  (/) )  ->  ( E. x  e.  om  y  =  suc  x  -> 
y  e.  A ) )
4313, 42mpd 15 . . . . 5  |-  ( ( ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )  /\  y  e.  ( om  \  A
) )  /\  (
( om  \  A
)  i^i  y )  =  (/) )  ->  y  e.  A )
442, 43mtand 691 . . . 4  |-  ( ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )  /\  y  e.  ( om  \  A
) )  ->  -.  ( ( om  \  A
)  i^i  y )  =  (/) )
4544nrexdv 3001 . . 3  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  -.  E. y  e.  ( om  \  A
) ( ( om 
\  A )  i^i  y )  =  (/) )
46 ordom 7074 . . . . 5  |-  Ord  om
47 difss 3737 . . . . 5  |-  ( om 
\  A )  C_  om
48 tz7.5 5744 . . . . 5  |-  ( ( Ord  om  /\  ( om  \  A )  C_  om 
/\  ( om  \  A
)  =/=  (/) )  ->  E. y  e.  ( om  \  A ) ( ( om  \  A
)  i^i  y )  =  (/) )
4946, 47, 48mp3an12 1414 . . . 4  |-  ( ( om  \  A )  =/=  (/)  ->  E. y  e.  ( om  \  A
) ( ( om 
\  A )  i^i  y )  =  (/) )
5049necon1bi 2822 . . 3  |-  ( -. 
E. y  e.  ( om  \  A ) ( ( om  \  A
)  i^i  y )  =  (/)  ->  ( om  \  A )  =  (/) )
5145, 50syl 17 . 2  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  ( om  \  A )  =  (/) )
52 ssdif0 3942 . 2  |-  ( om  C_  A  <->  ( om  \  A
)  =  (/) )
5351, 52sylibr 224 1  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   Ord word 5722   suc csuc 5725   omcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066
This theorem is referenced by:  find  7091  finds  7092  finds2  7094  omex  8540  dfom3  8544
  Copyright terms: Public domain W3C validator