| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegdi | Structured version Visualization version Unicode version | ||
| Description: Extended real version of xnegdi 12078. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 11950 |
. 2
| |
| 2 | elxr 11950 |
. . . 4
| |
| 3 | recn 10026 |
. . . . . . . 8
| |
| 4 | recn 10026 |
. . . . . . . 8
| |
| 5 | negdi 10338 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | syl2an 494 |
. . . . . . 7
|
| 7 | readdcl 10019 |
. . . . . . . 8
| |
| 8 | rexneg 12042 |
. . . . . . . 8
| |
| 9 | 7, 8 | syl 17 |
. . . . . . 7
|
| 10 | renegcl 10344 |
. . . . . . . 8
| |
| 11 | renegcl 10344 |
. . . . . . . 8
| |
| 12 | rexadd 12063 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | syl2an 494 |
. . . . . . 7
|
| 14 | 6, 9, 13 | 3eqtr4d 2666 |
. . . . . 6
|
| 15 | rexadd 12063 |
. . . . . . 7
| |
| 16 | xnegeq 12038 |
. . . . . . 7
| |
| 17 | 15, 16 | syl 17 |
. . . . . 6
|
| 18 | rexneg 12042 |
. . . . . . 7
| |
| 19 | rexneg 12042 |
. . . . . . 7
| |
| 20 | 18, 19 | oveqan12d 6669 |
. . . . . 6
|
| 21 | 14, 17, 20 | 3eqtr4d 2666 |
. . . . 5
|
| 22 | xnegpnf 12040 |
. . . . . 6
| |
| 23 | oveq2 6658 |
. . . . . . . 8
| |
| 24 | rexr 10085 |
. . . . . . . . 9
| |
| 25 | renemnf 10088 |
. . . . . . . . 9
| |
| 26 | xaddpnf1 12057 |
. . . . . . . . 9
| |
| 27 | 24, 25, 26 | syl2anc 693 |
. . . . . . . 8
|
| 28 | 23, 27 | sylan9eqr 2678 |
. . . . . . 7
|
| 29 | xnegeq 12038 |
. . . . . . 7
| |
| 30 | 28, 29 | syl 17 |
. . . . . 6
|
| 31 | xnegeq 12038 |
. . . . . . . . 9
| |
| 32 | 31, 22 | syl6eq 2672 |
. . . . . . . 8
|
| 33 | 32 | oveq2d 6666 |
. . . . . . 7
|
| 34 | 18, 10 | eqeltrd 2701 |
. . . . . . . 8
|
| 35 | rexr 10085 |
. . . . . . . . 9
| |
| 36 | renepnf 10087 |
. . . . . . . . 9
| |
| 37 | xaddmnf1 12059 |
. . . . . . . . 9
| |
| 38 | 35, 36, 37 | syl2anc 693 |
. . . . . . . 8
|
| 39 | 34, 38 | syl 17 |
. . . . . . 7
|
| 40 | 33, 39 | sylan9eqr 2678 |
. . . . . 6
|
| 41 | 22, 30, 40 | 3eqtr4a 2682 |
. . . . 5
|
| 42 | xnegmnf 12041 |
. . . . . 6
| |
| 43 | oveq2 6658 |
. . . . . . . 8
| |
| 44 | renepnf 10087 |
. . . . . . . . 9
| |
| 45 | xaddmnf1 12059 |
. . . . . . . . 9
| |
| 46 | 24, 44, 45 | syl2anc 693 |
. . . . . . . 8
|
| 47 | 43, 46 | sylan9eqr 2678 |
. . . . . . 7
|
| 48 | xnegeq 12038 |
. . . . . . 7
| |
| 49 | 47, 48 | syl 17 |
. . . . . 6
|
| 50 | xnegeq 12038 |
. . . . . . . . 9
| |
| 51 | 50, 42 | syl6eq 2672 |
. . . . . . . 8
|
| 52 | 51 | oveq2d 6666 |
. . . . . . 7
|
| 53 | renemnf 10088 |
. . . . . . . . 9
| |
| 54 | xaddpnf1 12057 |
. . . . . . . . 9
| |
| 55 | 35, 53, 54 | syl2anc 693 |
. . . . . . . 8
|
| 56 | 34, 55 | syl 17 |
. . . . . . 7
|
| 57 | 52, 56 | sylan9eqr 2678 |
. . . . . 6
|
| 58 | 42, 49, 57 | 3eqtr4a 2682 |
. . . . 5
|
| 59 | 21, 41, 58 | 3jaodan 1394 |
. . . 4
|
| 60 | 2, 59 | sylan2b 492 |
. . 3
|
| 61 | xneg0 12043 |
. . . . . . 7
| |
| 62 | simpr 477 |
. . . . . . . . . 10
| |
| 63 | 62 | oveq2d 6666 |
. . . . . . . . 9
|
| 64 | pnfaddmnf 12061 |
. . . . . . . . 9
| |
| 65 | 63, 64 | syl6eq 2672 |
. . . . . . . 8
|
| 66 | xnegeq 12038 |
. . . . . . . 8
| |
| 67 | 65, 66 | syl 17 |
. . . . . . 7
|
| 68 | 51 | adantl 482 |
. . . . . . . . 9
|
| 69 | 68 | oveq2d 6666 |
. . . . . . . 8
|
| 70 | mnfaddpnf 12062 |
. . . . . . . 8
| |
| 71 | 69, 70 | syl6eq 2672 |
. . . . . . 7
|
| 72 | 61, 67, 71 | 3eqtr4a 2682 |
. . . . . 6
|
| 73 | xaddpnf2 12058 |
. . . . . . . 8
| |
| 74 | xnegeq 12038 |
. . . . . . . 8
| |
| 75 | 73, 74 | syl 17 |
. . . . . . 7
|
| 76 | xnegcl 12044 |
. . . . . . . . 9
| |
| 77 | 76 | adantr 481 |
. . . . . . . 8
|
| 78 | xnegeq 12038 |
. . . . . . . . . . . 12
| |
| 79 | 78, 22 | syl6eq 2672 |
. . . . . . . . . . 11
|
| 80 | xnegneg 12045 |
. . . . . . . . . . . 12
| |
| 81 | 80 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 82 | 79, 81 | syl5ib 234 |
. . . . . . . . . 10
|
| 83 | 82 | necon3d 2815 |
. . . . . . . . 9
|
| 84 | 83 | imp 445 |
. . . . . . . 8
|
| 85 | xaddmnf2 12060 |
. . . . . . . 8
| |
| 86 | 77, 84, 85 | syl2anc 693 |
. . . . . . 7
|
| 87 | 22, 75, 86 | 3eqtr4a 2682 |
. . . . . 6
|
| 88 | 72, 87 | pm2.61dane 2881 |
. . . . 5
|
| 89 | 88 | adantl 482 |
. . . 4
|
| 90 | simpl 473 |
. . . . . 6
| |
| 91 | 90 | oveq1d 6665 |
. . . . 5
|
| 92 | xnegeq 12038 |
. . . . 5
| |
| 93 | 91, 92 | syl 17 |
. . . 4
|
| 94 | xnegeq 12038 |
. . . . . . 7
| |
| 95 | 94 | adantr 481 |
. . . . . 6
|
| 96 | 95, 22 | syl6eq 2672 |
. . . . 5
|
| 97 | 96 | oveq1d 6665 |
. . . 4
|
| 98 | 89, 93, 97 | 3eqtr4d 2666 |
. . 3
|
| 99 | simpr 477 |
. . . . . . . . . 10
| |
| 100 | 99 | oveq2d 6666 |
. . . . . . . . 9
|
| 101 | 100, 70 | syl6eq 2672 |
. . . . . . . 8
|
| 102 | xnegeq 12038 |
. . . . . . . 8
| |
| 103 | 101, 102 | syl 17 |
. . . . . . 7
|
| 104 | 32 | adantl 482 |
. . . . . . . . 9
|
| 105 | 104 | oveq2d 6666 |
. . . . . . . 8
|
| 106 | 105, 64 | syl6eq 2672 |
. . . . . . 7
|
| 107 | 61, 103, 106 | 3eqtr4a 2682 |
. . . . . 6
|
| 108 | xaddmnf2 12060 |
. . . . . . . 8
| |
| 109 | xnegeq 12038 |
. . . . . . . 8
| |
| 110 | 108, 109 | syl 17 |
. . . . . . 7
|
| 111 | 76 | adantr 481 |
. . . . . . . 8
|
| 112 | xnegeq 12038 |
. . . . . . . . . . . 12
| |
| 113 | 112, 42 | syl6eq 2672 |
. . . . . . . . . . 11
|
| 114 | 80 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 115 | 113, 114 | syl5ib 234 |
. . . . . . . . . 10
|
| 116 | 115 | necon3d 2815 |
. . . . . . . . 9
|
| 117 | 116 | imp 445 |
. . . . . . . 8
|
| 118 | xaddpnf2 12058 |
. . . . . . . 8
| |
| 119 | 111, 117, 118 | syl2anc 693 |
. . . . . . 7
|
| 120 | 42, 110, 119 | 3eqtr4a 2682 |
. . . . . 6
|
| 121 | 107, 120 | pm2.61dane 2881 |
. . . . 5
|
| 122 | 121 | adantl 482 |
. . . 4
|
| 123 | simpl 473 |
. . . . . 6
| |
| 124 | 123 | oveq1d 6665 |
. . . . 5
|
| 125 | xnegeq 12038 |
. . . . 5
| |
| 126 | 124, 125 | syl 17 |
. . . 4
|
| 127 | xnegeq 12038 |
. . . . . . 7
| |
| 128 | 127 | adantr 481 |
. . . . . 6
|
| 129 | 128, 42 | syl6eq 2672 |
. . . . 5
|
| 130 | 129 | oveq1d 6665 |
. . . 4
|
| 131 | 122, 126, 130 | 3eqtr4d 2666 |
. . 3
|
| 132 | 60, 98, 131 | 3jaoian 1393 |
. 2
|
| 133 | 1, 132 | sylanb 489 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-sub 10268 df-neg 10269 df-xneg 11946 df-xadd 11947 |
| This theorem is referenced by: xaddass2 12080 xposdif 12092 xadddi 12125 xrsxmet 22612 |
| Copyright terms: Public domain | W3C validator |