MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddilem Structured version   Visualization version   Unicode version

Theorem xadddilem 12124
Description: Lemma for xadddi 12125. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddilem  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )

Proof of Theorem xadddilem
StepHypRef Expression
1 simpl1 1064 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  A  e.  RR )
2 recn 10026 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
3 recn 10026 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  CC )
4 recn 10026 . . . . . . . 8  |-  ( C  e.  RR  ->  C  e.  CC )
5 adddi 10025 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
62, 3, 4, 5syl3an 1368 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
763expa 1265 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A  x.  ( B  +  C
) )  =  ( ( A  x.  B
)  +  ( A  x.  C ) ) )
8 readdcl 10019 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
9 rexmul 12101 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  ( A xe ( B  +  C ) )  =  ( A  x.  ( B  +  C )
) )
108, 9sylan2 491 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( A xe ( B  +  C ) )  =  ( A  x.  ( B  +  C
) ) )
1110anassrs 680 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A xe ( B  +  C ) )  =  ( A  x.  ( B  +  C )
) )
12 remulcl 10021 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
1312adantr 481 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A  x.  B )  e.  RR )
14 remulcl 10021 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  e.  RR )
1514adantlr 751 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A  x.  C )  e.  RR )
16 rexadd 12063 . . . . . . 7  |-  ( ( ( A  x.  B
)  e.  RR  /\  ( A  x.  C
)  e.  RR )  ->  ( ( A  x.  B ) +e ( A  x.  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
1713, 15, 16syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A  x.  B ) +e ( A  x.  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
187, 11, 173eqtr4d 2666 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A xe ( B  +  C ) )  =  ( ( A  x.  B ) +e
( A  x.  C
) ) )
19 rexadd 12063 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B +e
C )  =  ( B  +  C ) )
2019adantll 750 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( B +e C )  =  ( B  +  C
) )
2120oveq2d 6666 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A xe ( B +e C ) )  =  ( A xe ( B  +  C ) ) )
22 rexmul 12101 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A xe B )  =  ( A  x.  B ) )
2322adantr 481 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A xe B )  =  ( A  x.  B
) )
24 rexmul 12101 . . . . . . 7  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A xe C )  =  ( A  x.  C ) )
2524adantlr 751 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A xe C )  =  ( A  x.  C
) )
2623, 25oveq12d 6668 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A xe B ) +e ( A xe C ) )  =  ( ( A  x.  B ) +e ( A  x.  C ) ) )
2718, 21, 263eqtr4d 2666 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
281, 27sylanl1 682 . . 3  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
29 rexr 10085 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  RR* )
30293ad2ant1 1082 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  A  e.  RR* )
31 xmulpnf1 12104 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  ( A xe +oo )  = +oo )
3230, 31sylan 488 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A xe +oo )  = +oo )
3332adantr 481 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( A xe +oo )  = +oo )
3422, 12eqeltrd 2701 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A xe B )  e.  RR )
351, 34sylan 488 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( A xe B )  e.  RR )
36 rexr 10085 . . . . . . . 8  |-  ( ( A xe B )  e.  RR  ->  ( A xe B )  e.  RR* )
37 renemnf 10088 . . . . . . . 8  |-  ( ( A xe B )  e.  RR  ->  ( A xe B )  =/= -oo )
38 xaddpnf1 12057 . . . . . . . 8  |-  ( ( ( A xe B )  e.  RR*  /\  ( A xe B )  =/= -oo )  ->  ( ( A xe B ) +e +oo )  = +oo )
3936, 37, 38syl2anc 693 . . . . . . 7  |-  ( ( A xe B )  e.  RR  ->  ( ( A xe B ) +e +oo )  = +oo )
4035, 39syl 17 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  (
( A xe B ) +e +oo )  = +oo )
4133, 40eqtr4d 2659 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( A xe +oo )  =  ( ( A xe B ) +e +oo )
)
4241adantr 481 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = +oo )  ->  ( A xe +oo )  =  ( ( A xe B ) +e +oo )
)
43 oveq2 6658 . . . . . 6  |-  ( C  = +oo  ->  ( B +e C )  =  ( B +e +oo ) )
44 rexr 10085 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  RR* )
45 renemnf 10088 . . . . . . . 8  |-  ( B  e.  RR  ->  B  =/= -oo )
46 xaddpnf1 12057 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
4744, 45, 46syl2anc 693 . . . . . . 7  |-  ( B  e.  RR  ->  ( B +e +oo )  = +oo )
4847adantl 482 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( B +e +oo )  = +oo )
4943, 48sylan9eqr 2678 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = +oo )  ->  ( B +e C )  = +oo )
5049oveq2d 6666 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = +oo )  ->  ( A xe ( B +e C ) )  =  ( A xe +oo )
)
51 oveq2 6658 . . . . . 6  |-  ( C  = +oo  ->  ( A xe C )  =  ( A xe +oo ) )
5251, 33sylan9eqr 2678 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = +oo )  ->  ( A xe C )  = +oo )
5352oveq2d 6666 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = +oo )  ->  (
( A xe B ) +e
( A xe C ) )  =  ( ( A xe B ) +e +oo ) )
5442, 50, 533eqtr4d 2666 . . 3  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = +oo )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
55 xmulmnf1 12106 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  ( A xe -oo )  = -oo )
5630, 55sylan 488 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A xe -oo )  = -oo )
5756adantr 481 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( A xe -oo )  = -oo )
5857adantr 481 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = -oo )  ->  ( A xe -oo )  = -oo )
5935adantr 481 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = -oo )  ->  ( A xe B )  e.  RR )
60 renepnf 10087 . . . . . . 7  |-  ( ( A xe B )  e.  RR  ->  ( A xe B )  =/= +oo )
61 xaddmnf1 12059 . . . . . . 7  |-  ( ( ( A xe B )  e.  RR*  /\  ( A xe B )  =/= +oo )  ->  ( ( A xe B ) +e -oo )  = -oo )
6236, 60, 61syl2anc 693 . . . . . 6  |-  ( ( A xe B )  e.  RR  ->  ( ( A xe B ) +e -oo )  = -oo )
6359, 62syl 17 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = -oo )  ->  (
( A xe B ) +e -oo )  = -oo )
6458, 63eqtr4d 2659 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = -oo )  ->  ( A xe -oo )  =  ( ( A xe B ) +e -oo )
)
65 oveq2 6658 . . . . . 6  |-  ( C  = -oo  ->  ( B +e C )  =  ( B +e -oo ) )
66 renepnf 10087 . . . . . . . 8  |-  ( B  e.  RR  ->  B  =/= +oo )
67 xaddmnf1 12059 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( B +e -oo )  = -oo )
6844, 66, 67syl2anc 693 . . . . . . 7  |-  ( B  e.  RR  ->  ( B +e -oo )  = -oo )
6968adantl 482 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( B +e -oo )  = -oo )
7065, 69sylan9eqr 2678 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = -oo )  ->  ( B +e C )  = -oo )
7170oveq2d 6666 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = -oo )  ->  ( A xe ( B +e C ) )  =  ( A xe -oo )
)
72 oveq2 6658 . . . . . 6  |-  ( C  = -oo  ->  ( A xe C )  =  ( A xe -oo ) )
7372, 57sylan9eqr 2678 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = -oo )  ->  ( A xe C )  = -oo )
7473oveq2d 6666 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = -oo )  ->  (
( A xe B ) +e
( A xe C ) )  =  ( ( A xe B ) +e -oo ) )
7564, 71, 743eqtr4d 2666 . . 3  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  = -oo )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
76 simpl3 1066 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  C  e.  RR* )
77 elxr 11950 . . . . 5  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
7876, 77sylib 208 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
7978adantr 481 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
8028, 54, 75, 79mpjao3dan 1395 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
8132ad2antrr 762 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  e.  RR )  ->  ( A xe +oo )  = +oo )
821adantr 481 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  = +oo )  ->  A  e.  RR )
8324, 14eqeltrd 2701 . . . . . . 7  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A xe C )  e.  RR )
8482, 83sylan 488 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  e.  RR )  ->  ( A xe C )  e.  RR )
85 rexr 10085 . . . . . . 7  |-  ( ( A xe C )  e.  RR  ->  ( A xe C )  e.  RR* )
86 renemnf 10088 . . . . . . 7  |-  ( ( A xe C )  e.  RR  ->  ( A xe C )  =/= -oo )
87 xaddpnf2 12058 . . . . . . 7  |-  ( ( ( A xe C )  e.  RR*  /\  ( A xe C )  =/= -oo )  ->  ( +oo +e ( A xe C ) )  = +oo )
8885, 86, 87syl2anc 693 . . . . . 6  |-  ( ( A xe C )  e.  RR  ->  ( +oo +e ( A xe C ) )  = +oo )
8984, 88syl 17 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  e.  RR )  ->  ( +oo +e ( A xe C ) )  = +oo )
9081, 89eqtr4d 2659 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  e.  RR )  ->  ( A xe +oo )  =  ( +oo +e
( A xe C ) ) )
91 simpr 477 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  = +oo )  ->  B  = +oo )
9291oveq1d 6665 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  = +oo )  ->  ( B +e C )  =  ( +oo +e C ) )
93 rexr 10085 . . . . . . 7  |-  ( C  e.  RR  ->  C  e.  RR* )
94 renemnf 10088 . . . . . . 7  |-  ( C  e.  RR  ->  C  =/= -oo )
95 xaddpnf2 12058 . . . . . . 7  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( +oo +e C )  = +oo )
9693, 94, 95syl2anc 693 . . . . . 6  |-  ( C  e.  RR  ->  ( +oo +e C )  = +oo )
9792, 96sylan9eq 2676 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  e.  RR )  ->  ( B +e C )  = +oo )
9897oveq2d 6666 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  e.  RR )  ->  ( A xe ( B +e C ) )  =  ( A xe +oo )
)
99 oveq2 6658 . . . . . . 7  |-  ( B  = +oo  ->  ( A xe B )  =  ( A xe +oo ) )
10099, 32sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  = +oo )  ->  ( A xe B )  = +oo )
101100adantr 481 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  e.  RR )  ->  ( A xe B )  = +oo )
102101oveq1d 6665 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  e.  RR )  ->  (
( A xe B ) +e
( A xe C ) )  =  ( +oo +e
( A xe C ) ) )
10390, 98, 1023eqtr4d 2666 . . 3  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  e.  RR )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
104 pnfxr 10092 . . . . . . 7  |- +oo  e.  RR*
105 pnfnemnf 10094 . . . . . . 7  |- +oo  =/= -oo
106 xaddpnf1 12057 . . . . . . 7  |-  ( ( +oo  e.  RR*  /\ +oo  =/= -oo )  ->  ( +oo +e +oo )  = +oo )
107104, 105, 106mp2an 708 . . . . . 6  |-  ( +oo +e +oo )  = +oo
10832, 32oveq12d 6668 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A xe +oo ) +e
( A xe +oo ) )  =  ( +oo +e +oo ) )
109107, 108, 323eqtr4a 2682 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A xe +oo ) +e
( A xe +oo ) )  =  ( A xe +oo ) )
110109ad2antrr 762 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  = +oo )  ->  (
( A xe +oo ) +e
( A xe +oo ) )  =  ( A xe +oo ) )
11199, 51oveqan12d 6669 . . . . 5  |-  ( ( B  = +oo  /\  C  = +oo )  ->  ( ( A xe B ) +e ( A xe C ) )  =  ( ( A xe +oo ) +e ( A xe +oo )
) )
112111adantll 750 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  = +oo )  ->  (
( A xe B ) +e
( A xe C ) )  =  ( ( A xe +oo ) +e ( A xe +oo ) ) )
113 oveq12 6659 . . . . . . 7  |-  ( ( B  = +oo  /\  C  = +oo )  ->  ( B +e
C )  =  ( +oo +e +oo ) )
114113, 107syl6eq 2672 . . . . . 6  |-  ( ( B  = +oo  /\  C  = +oo )  ->  ( B +e
C )  = +oo )
115114oveq2d 6666 . . . . 5  |-  ( ( B  = +oo  /\  C  = +oo )  ->  ( A xe ( B +e
C ) )  =  ( A xe +oo ) )
116115adantll 750 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  = +oo )  ->  ( A xe ( B +e C ) )  =  ( A xe +oo )
)
117110, 112, 1163eqtr4rd 2667 . . 3  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  = +oo )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
118 pnfaddmnf 12061 . . . . . 6  |-  ( +oo +e -oo )  =  0
11932, 56oveq12d 6668 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A xe +oo ) +e
( A xe -oo ) )  =  ( +oo +e -oo ) )
120 xmul01 12097 . . . . . . 7  |-  ( A  e.  RR*  ->  ( A xe 0 )  =  0 )
1211, 29, 1203syl 18 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A xe 0 )  =  0 )
122118, 119, 1213eqtr4a 2682 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A xe +oo ) +e
( A xe -oo ) )  =  ( A xe 0 ) )
123122ad2antrr 762 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  = -oo )  ->  (
( A xe +oo ) +e
( A xe -oo ) )  =  ( A xe 0 ) )
12499, 72oveqan12d 6669 . . . . 5  |-  ( ( B  = +oo  /\  C  = -oo )  ->  ( ( A xe B ) +e ( A xe C ) )  =  ( ( A xe +oo ) +e ( A xe -oo )
) )
125124adantll 750 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  = -oo )  ->  (
( A xe B ) +e
( A xe C ) )  =  ( ( A xe +oo ) +e ( A xe -oo ) ) )
126 oveq12 6659 . . . . . . 7  |-  ( ( B  = +oo  /\  C  = -oo )  ->  ( B +e
C )  =  ( +oo +e -oo ) )
127126, 118syl6eq 2672 . . . . . 6  |-  ( ( B  = +oo  /\  C  = -oo )  ->  ( B +e
C )  =  0 )
128127oveq2d 6666 . . . . 5  |-  ( ( B  = +oo  /\  C  = -oo )  ->  ( A xe ( B +e
C ) )  =  ( A xe 0 ) )
129128adantll 750 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  = -oo )  ->  ( A xe ( B +e C ) )  =  ( A xe 0 ) )
130123, 125, 1293eqtr4rd 2667 . . 3  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = +oo )  /\  C  = -oo )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
13178adantr 481 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  = +oo )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
132103, 117, 130, 131mpjao3dan 1395 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  = +oo )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
13356ad2antrr 762 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  e.  RR )  ->  ( A xe -oo )  = -oo )
1341adantr 481 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  = -oo )  ->  A  e.  RR )
135134, 83sylan 488 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  e.  RR )  ->  ( A xe C )  e.  RR )
136 renepnf 10087 . . . . . . 7  |-  ( ( A xe C )  e.  RR  ->  ( A xe C )  =/= +oo )
137 xaddmnf2 12060 . . . . . . 7  |-  ( ( ( A xe C )  e.  RR*  /\  ( A xe C )  =/= +oo )  ->  ( -oo +e ( A xe C ) )  = -oo )
13885, 136, 137syl2anc 693 . . . . . 6  |-  ( ( A xe C )  e.  RR  ->  ( -oo +e ( A xe C ) )  = -oo )
139135, 138syl 17 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  e.  RR )  ->  ( -oo +e ( A xe C ) )  = -oo )
140133, 139eqtr4d 2659 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  e.  RR )  ->  ( A xe -oo )  =  ( -oo +e
( A xe C ) ) )
141 simpr 477 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  = -oo )  ->  B  = -oo )
142141oveq1d 6665 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  = -oo )  ->  ( B +e C )  =  ( -oo +e C ) )
143 renepnf 10087 . . . . . . 7  |-  ( C  e.  RR  ->  C  =/= +oo )
144 xaddmnf2 12060 . . . . . . 7  |-  ( ( C  e.  RR*  /\  C  =/= +oo )  ->  ( -oo +e C )  = -oo )
14593, 143, 144syl2anc 693 . . . . . 6  |-  ( C  e.  RR  ->  ( -oo +e C )  = -oo )
146142, 145sylan9eq 2676 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  e.  RR )  ->  ( B +e C )  = -oo )
147146oveq2d 6666 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  e.  RR )  ->  ( A xe ( B +e C ) )  =  ( A xe -oo )
)
148 oveq2 6658 . . . . . . 7  |-  ( B  = -oo  ->  ( A xe B )  =  ( A xe -oo ) )
149148, 56sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  = -oo )  ->  ( A xe B )  = -oo )
150149adantr 481 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  e.  RR )  ->  ( A xe B )  = -oo )
151150oveq1d 6665 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  e.  RR )  ->  (
( A xe B ) +e
( A xe C ) )  =  ( -oo +e
( A xe C ) ) )
152140, 147, 1513eqtr4d 2666 . . 3  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  e.  RR )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
15356, 32oveq12d 6668 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A xe -oo ) +e
( A xe +oo ) )  =  ( -oo +e +oo ) )
154 mnfaddpnf 12062 . . . . . . 7  |-  ( -oo +e +oo )  =  0
155153, 154syl6eq 2672 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A xe -oo ) +e
( A xe +oo ) )  =  0 )
156121, 155eqtr4d 2659 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A xe 0 )  =  ( ( A xe -oo ) +e ( A xe +oo )
) )
157156ad2antrr 762 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  = +oo )  ->  ( A xe 0 )  =  ( ( A xe -oo ) +e ( A xe +oo )
) )
158 oveq12 6659 . . . . . . 7  |-  ( ( B  = -oo  /\  C  = +oo )  ->  ( B +e
C )  =  ( -oo +e +oo ) )
159158, 154syl6eq 2672 . . . . . 6  |-  ( ( B  = -oo  /\  C  = +oo )  ->  ( B +e
C )  =  0 )
160159oveq2d 6666 . . . . 5  |-  ( ( B  = -oo  /\  C  = +oo )  ->  ( A xe ( B +e
C ) )  =  ( A xe 0 ) )
161160adantll 750 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  = +oo )  ->  ( A xe ( B +e C ) )  =  ( A xe 0 ) )
162148, 51oveqan12d 6669 . . . . 5  |-  ( ( B  = -oo  /\  C  = +oo )  ->  ( ( A xe B ) +e ( A xe C ) )  =  ( ( A xe -oo ) +e ( A xe +oo )
) )
163162adantll 750 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  = +oo )  ->  (
( A xe B ) +e
( A xe C ) )  =  ( ( A xe -oo ) +e ( A xe +oo ) ) )
164157, 161, 1633eqtr4d 2666 . . 3  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  = +oo )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
165 mnfxr 10096 . . . . . . 7  |- -oo  e.  RR*
166 mnfnepnf 10095 . . . . . . 7  |- -oo  =/= +oo
167 xaddmnf1 12059 . . . . . . 7  |-  ( ( -oo  e.  RR*  /\ -oo  =/= +oo )  ->  ( -oo +e -oo )  = -oo )
168165, 166, 167mp2an 708 . . . . . 6  |-  ( -oo +e -oo )  = -oo
16956, 56oveq12d 6668 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A xe -oo ) +e
( A xe -oo ) )  =  ( -oo +e -oo ) )
170168, 169, 563eqtr4a 2682 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A xe -oo ) +e
( A xe -oo ) )  =  ( A xe -oo ) )
171170ad2antrr 762 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  = -oo )  ->  (
( A xe -oo ) +e
( A xe -oo ) )  =  ( A xe -oo ) )
172148, 72oveqan12d 6669 . . . . 5  |-  ( ( B  = -oo  /\  C  = -oo )  ->  ( ( A xe B ) +e ( A xe C ) )  =  ( ( A xe -oo ) +e ( A xe -oo )
) )
173172adantll 750 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  = -oo )  ->  (
( A xe B ) +e
( A xe C ) )  =  ( ( A xe -oo ) +e ( A xe -oo ) ) )
174 oveq12 6659 . . . . . . 7  |-  ( ( B  = -oo  /\  C  = -oo )  ->  ( B +e
C )  =  ( -oo +e -oo ) )
175174, 168syl6eq 2672 . . . . . 6  |-  ( ( B  = -oo  /\  C  = -oo )  ->  ( B +e
C )  = -oo )
176175oveq2d 6666 . . . . 5  |-  ( ( B  = -oo  /\  C  = -oo )  ->  ( A xe ( B +e
C ) )  =  ( A xe -oo ) )
177176adantll 750 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  = -oo )  ->  ( A xe ( B +e C ) )  =  ( A xe -oo )
)
178171, 173, 1773eqtr4rd 2667 . . 3  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  = -oo )  /\  C  = -oo )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
17978adantr 481 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  = -oo )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
180152, 164, 178, 179mpjao3dan 1395 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  = -oo )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
181 simpl2 1065 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  B  e.  RR* )
182 elxr 11950 . . 3  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
183181, 182sylib 208 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
18480, 132, 180, 183mpjao3dan 1395 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074   +ecxad 11944   xecxmu 11945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-xneg 11946  df-xadd 11947  df-xmul 11948
This theorem is referenced by:  xadddi  12125
  Copyright terms: Public domain W3C validator