| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xadddilem | Structured version Visualization version Unicode version | ||
| Description: Lemma for xadddi 12125. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xadddilem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1064 |
. . . 4
| |
| 2 | recn 10026 |
. . . . . . . 8
| |
| 3 | recn 10026 |
. . . . . . . 8
| |
| 4 | recn 10026 |
. . . . . . . 8
| |
| 5 | adddi 10025 |
. . . . . . . 8
| |
| 6 | 2, 3, 4, 5 | syl3an 1368 |
. . . . . . 7
|
| 7 | 6 | 3expa 1265 |
. . . . . 6
|
| 8 | readdcl 10019 |
. . . . . . . 8
| |
| 9 | rexmul 12101 |
. . . . . . . 8
| |
| 10 | 8, 9 | sylan2 491 |
. . . . . . 7
|
| 11 | 10 | anassrs 680 |
. . . . . 6
|
| 12 | remulcl 10021 |
. . . . . . . 8
| |
| 13 | 12 | adantr 481 |
. . . . . . 7
|
| 14 | remulcl 10021 |
. . . . . . . 8
| |
| 15 | 14 | adantlr 751 |
. . . . . . 7
|
| 16 | rexadd 12063 |
. . . . . . 7
| |
| 17 | 13, 15, 16 | syl2anc 693 |
. . . . . 6
|
| 18 | 7, 11, 17 | 3eqtr4d 2666 |
. . . . 5
|
| 19 | rexadd 12063 |
. . . . . . 7
| |
| 20 | 19 | adantll 750 |
. . . . . 6
|
| 21 | 20 | oveq2d 6666 |
. . . . 5
|
| 22 | rexmul 12101 |
. . . . . . 7
| |
| 23 | 22 | adantr 481 |
. . . . . 6
|
| 24 | rexmul 12101 |
. . . . . . 7
| |
| 25 | 24 | adantlr 751 |
. . . . . 6
|
| 26 | 23, 25 | oveq12d 6668 |
. . . . 5
|
| 27 | 18, 21, 26 | 3eqtr4d 2666 |
. . . 4
|
| 28 | 1, 27 | sylanl1 682 |
. . 3
|
| 29 | rexr 10085 |
. . . . . . . . 9
| |
| 30 | 29 | 3ad2ant1 1082 |
. . . . . . . 8
|
| 31 | xmulpnf1 12104 |
. . . . . . . 8
| |
| 32 | 30, 31 | sylan 488 |
. . . . . . 7
|
| 33 | 32 | adantr 481 |
. . . . . 6
|
| 34 | 22, 12 | eqeltrd 2701 |
. . . . . . . 8
|
| 35 | 1, 34 | sylan 488 |
. . . . . . 7
|
| 36 | rexr 10085 |
. . . . . . . 8
| |
| 37 | renemnf 10088 |
. . . . . . . 8
| |
| 38 | xaddpnf1 12057 |
. . . . . . . 8
| |
| 39 | 36, 37, 38 | syl2anc 693 |
. . . . . . 7
|
| 40 | 35, 39 | syl 17 |
. . . . . 6
|
| 41 | 33, 40 | eqtr4d 2659 |
. . . . 5
|
| 42 | 41 | adantr 481 |
. . . 4
|
| 43 | oveq2 6658 |
. . . . . 6
| |
| 44 | rexr 10085 |
. . . . . . . 8
| |
| 45 | renemnf 10088 |
. . . . . . . 8
| |
| 46 | xaddpnf1 12057 |
. . . . . . . 8
| |
| 47 | 44, 45, 46 | syl2anc 693 |
. . . . . . 7
|
| 48 | 47 | adantl 482 |
. . . . . 6
|
| 49 | 43, 48 | sylan9eqr 2678 |
. . . . 5
|
| 50 | 49 | oveq2d 6666 |
. . . 4
|
| 51 | oveq2 6658 |
. . . . . 6
| |
| 52 | 51, 33 | sylan9eqr 2678 |
. . . . 5
|
| 53 | 52 | oveq2d 6666 |
. . . 4
|
| 54 | 42, 50, 53 | 3eqtr4d 2666 |
. . 3
|
| 55 | xmulmnf1 12106 |
. . . . . . . 8
| |
| 56 | 30, 55 | sylan 488 |
. . . . . . 7
|
| 57 | 56 | adantr 481 |
. . . . . 6
|
| 58 | 57 | adantr 481 |
. . . . 5
|
| 59 | 35 | adantr 481 |
. . . . . 6
|
| 60 | renepnf 10087 |
. . . . . . 7
| |
| 61 | xaddmnf1 12059 |
. . . . . . 7
| |
| 62 | 36, 60, 61 | syl2anc 693 |
. . . . . 6
|
| 63 | 59, 62 | syl 17 |
. . . . 5
|
| 64 | 58, 63 | eqtr4d 2659 |
. . . 4
|
| 65 | oveq2 6658 |
. . . . . 6
| |
| 66 | renepnf 10087 |
. . . . . . . 8
| |
| 67 | xaddmnf1 12059 |
. . . . . . . 8
| |
| 68 | 44, 66, 67 | syl2anc 693 |
. . . . . . 7
|
| 69 | 68 | adantl 482 |
. . . . . 6
|
| 70 | 65, 69 | sylan9eqr 2678 |
. . . . 5
|
| 71 | 70 | oveq2d 6666 |
. . . 4
|
| 72 | oveq2 6658 |
. . . . . 6
| |
| 73 | 72, 57 | sylan9eqr 2678 |
. . . . 5
|
| 74 | 73 | oveq2d 6666 |
. . . 4
|
| 75 | 64, 71, 74 | 3eqtr4d 2666 |
. . 3
|
| 76 | simpl3 1066 |
. . . . 5
| |
| 77 | elxr 11950 |
. . . . 5
| |
| 78 | 76, 77 | sylib 208 |
. . . 4
|
| 79 | 78 | adantr 481 |
. . 3
|
| 80 | 28, 54, 75, 79 | mpjao3dan 1395 |
. 2
|
| 81 | 32 | ad2antrr 762 |
. . . . 5
|
| 82 | 1 | adantr 481 |
. . . . . . 7
|
| 83 | 24, 14 | eqeltrd 2701 |
. . . . . . 7
|
| 84 | 82, 83 | sylan 488 |
. . . . . 6
|
| 85 | rexr 10085 |
. . . . . . 7
| |
| 86 | renemnf 10088 |
. . . . . . 7
| |
| 87 | xaddpnf2 12058 |
. . . . . . 7
| |
| 88 | 85, 86, 87 | syl2anc 693 |
. . . . . 6
|
| 89 | 84, 88 | syl 17 |
. . . . 5
|
| 90 | 81, 89 | eqtr4d 2659 |
. . . 4
|
| 91 | simpr 477 |
. . . . . . 7
| |
| 92 | 91 | oveq1d 6665 |
. . . . . 6
|
| 93 | rexr 10085 |
. . . . . . 7
| |
| 94 | renemnf 10088 |
. . . . . . 7
| |
| 95 | xaddpnf2 12058 |
. . . . . . 7
| |
| 96 | 93, 94, 95 | syl2anc 693 |
. . . . . 6
|
| 97 | 92, 96 | sylan9eq 2676 |
. . . . 5
|
| 98 | 97 | oveq2d 6666 |
. . . 4
|
| 99 | oveq2 6658 |
. . . . . . 7
| |
| 100 | 99, 32 | sylan9eqr 2678 |
. . . . . 6
|
| 101 | 100 | adantr 481 |
. . . . 5
|
| 102 | 101 | oveq1d 6665 |
. . . 4
|
| 103 | 90, 98, 102 | 3eqtr4d 2666 |
. . 3
|
| 104 | pnfxr 10092 |
. . . . . . 7
| |
| 105 | pnfnemnf 10094 |
. . . . . . 7
| |
| 106 | xaddpnf1 12057 |
. . . . . . 7
| |
| 107 | 104, 105, 106 | mp2an 708 |
. . . . . 6
|
| 108 | 32, 32 | oveq12d 6668 |
. . . . . 6
|
| 109 | 107, 108, 32 | 3eqtr4a 2682 |
. . . . 5
|
| 110 | 109 | ad2antrr 762 |
. . . 4
|
| 111 | 99, 51 | oveqan12d 6669 |
. . . . 5
|
| 112 | 111 | adantll 750 |
. . . 4
|
| 113 | oveq12 6659 |
. . . . . . 7
| |
| 114 | 113, 107 | syl6eq 2672 |
. . . . . 6
|
| 115 | 114 | oveq2d 6666 |
. . . . 5
|
| 116 | 115 | adantll 750 |
. . . 4
|
| 117 | 110, 112, 116 | 3eqtr4rd 2667 |
. . 3
|
| 118 | pnfaddmnf 12061 |
. . . . . 6
| |
| 119 | 32, 56 | oveq12d 6668 |
. . . . . 6
|
| 120 | xmul01 12097 |
. . . . . . 7
| |
| 121 | 1, 29, 120 | 3syl 18 |
. . . . . 6
|
| 122 | 118, 119, 121 | 3eqtr4a 2682 |
. . . . 5
|
| 123 | 122 | ad2antrr 762 |
. . . 4
|
| 124 | 99, 72 | oveqan12d 6669 |
. . . . 5
|
| 125 | 124 | adantll 750 |
. . . 4
|
| 126 | oveq12 6659 |
. . . . . . 7
| |
| 127 | 126, 118 | syl6eq 2672 |
. . . . . 6
|
| 128 | 127 | oveq2d 6666 |
. . . . 5
|
| 129 | 128 | adantll 750 |
. . . 4
|
| 130 | 123, 125, 129 | 3eqtr4rd 2667 |
. . 3
|
| 131 | 78 | adantr 481 |
. . 3
|
| 132 | 103, 117, 130, 131 | mpjao3dan 1395 |
. 2
|
| 133 | 56 | ad2antrr 762 |
. . . . 5
|
| 134 | 1 | adantr 481 |
. . . . . . 7
|
| 135 | 134, 83 | sylan 488 |
. . . . . 6
|
| 136 | renepnf 10087 |
. . . . . . 7
| |
| 137 | xaddmnf2 12060 |
. . . . . . 7
| |
| 138 | 85, 136, 137 | syl2anc 693 |
. . . . . 6
|
| 139 | 135, 138 | syl 17 |
. . . . 5
|
| 140 | 133, 139 | eqtr4d 2659 |
. . . 4
|
| 141 | simpr 477 |
. . . . . . 7
| |
| 142 | 141 | oveq1d 6665 |
. . . . . 6
|
| 143 | renepnf 10087 |
. . . . . . 7
| |
| 144 | xaddmnf2 12060 |
. . . . . . 7
| |
| 145 | 93, 143, 144 | syl2anc 693 |
. . . . . 6
|
| 146 | 142, 145 | sylan9eq 2676 |
. . . . 5
|
| 147 | 146 | oveq2d 6666 |
. . . 4
|
| 148 | oveq2 6658 |
. . . . . . 7
| |
| 149 | 148, 56 | sylan9eqr 2678 |
. . . . . 6
|
| 150 | 149 | adantr 481 |
. . . . 5
|
| 151 | 150 | oveq1d 6665 |
. . . 4
|
| 152 | 140, 147, 151 | 3eqtr4d 2666 |
. . 3
|
| 153 | 56, 32 | oveq12d 6668 |
. . . . . . 7
|
| 154 | mnfaddpnf 12062 |
. . . . . . 7
| |
| 155 | 153, 154 | syl6eq 2672 |
. . . . . 6
|
| 156 | 121, 155 | eqtr4d 2659 |
. . . . 5
|
| 157 | 156 | ad2antrr 762 |
. . . 4
|
| 158 | oveq12 6659 |
. . . . . . 7
| |
| 159 | 158, 154 | syl6eq 2672 |
. . . . . 6
|
| 160 | 159 | oveq2d 6666 |
. . . . 5
|
| 161 | 160 | adantll 750 |
. . . 4
|
| 162 | 148, 51 | oveqan12d 6669 |
. . . . 5
|
| 163 | 162 | adantll 750 |
. . . 4
|
| 164 | 157, 161, 163 | 3eqtr4d 2666 |
. . 3
|
| 165 | mnfxr 10096 |
. . . . . . 7
| |
| 166 | mnfnepnf 10095 |
. . . . . . 7
| |
| 167 | xaddmnf1 12059 |
. . . . . . 7
| |
| 168 | 165, 166, 167 | mp2an 708 |
. . . . . 6
|
| 169 | 56, 56 | oveq12d 6668 |
. . . . . 6
|
| 170 | 168, 169, 56 | 3eqtr4a 2682 |
. . . . 5
|
| 171 | 170 | ad2antrr 762 |
. . . 4
|
| 172 | 148, 72 | oveqan12d 6669 |
. . . . 5
|
| 173 | 172 | adantll 750 |
. . . 4
|
| 174 | oveq12 6659 |
. . . . . . 7
| |
| 175 | 174, 168 | syl6eq 2672 |
. . . . . 6
|
| 176 | 175 | oveq2d 6666 |
. . . . 5
|
| 177 | 176 | adantll 750 |
. . . 4
|
| 178 | 171, 173, 177 | 3eqtr4rd 2667 |
. . 3
|
| 179 | 78 | adantr 481 |
. . 3
|
| 180 | 152, 164, 178, 179 | mpjao3dan 1395 |
. 2
|
| 181 | simpl2 1065 |
. . 3
| |
| 182 | elxr 11950 |
. . 3
| |
| 183 | 181, 182 | sylib 208 |
. 2
|
| 184 | 80, 132, 180, 183 | mpjao3dan 1395 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-xneg 11946 df-xadd 11947 df-xmul 11948 |
| This theorem is referenced by: xadddi 12125 |
| Copyright terms: Public domain | W3C validator |