| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsppratlem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for lspprat 19153. In the first case of lsppratlem1 19147, since
|
| Ref | Expression |
|---|---|
| lspprat.v |
|
| lspprat.s |
|
| lspprat.n |
|
| lspprat.w |
|
| lspprat.u |
|
| lspprat.x |
|
| lspprat.y |
|
| lspprat.p |
|
| lsppratlem1.o |
|
| lsppratlem1.x2 |
|
| lsppratlem1.y2 |
|
| lsppratlem3.x3 |
|
| Ref | Expression |
|---|---|
| lsppratlem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.w |
. . . 4
| |
| 2 | lveclmod 19106 |
. . . . . . . 8
| |
| 3 | 1, 2 | syl 17 |
. . . . . . 7
|
| 4 | lspprat.y |
. . . . . . . 8
| |
| 5 | 4 | snssd 4340 |
. . . . . . 7
|
| 6 | lspprat.v |
. . . . . . . 8
| |
| 7 | lspprat.n |
. . . . . . . 8
| |
| 8 | 6, 7 | lspssv 18983 |
. . . . . . 7
|
| 9 | 3, 5, 8 | syl2anc 693 |
. . . . . 6
|
| 10 | lsppratlem3.x3 |
. . . . . 6
| |
| 11 | 9, 10 | sseldd 3604 |
. . . . 5
|
| 12 | 11 | snssd 4340 |
. . . 4
|
| 13 | lspprat.x |
. . . 4
| |
| 14 | lspprat.p |
. . . . . . . 8
| |
| 15 | 14 | pssssd 3704 |
. . . . . . 7
|
| 16 | 13 | snssd 4340 |
. . . . . . . . . 10
|
| 17 | 12, 16 | unssd 3789 |
. . . . . . . . 9
|
| 18 | lspprat.s |
. . . . . . . . . 10
| |
| 19 | 6, 18, 7 | lspcl 18976 |
. . . . . . . . 9
|
| 20 | 3, 17, 19 | syl2anc 693 |
. . . . . . . 8
|
| 21 | df-pr 4180 |
. . . . . . . . 9
| |
| 22 | 6, 7 | lspssid 18985 |
. . . . . . . . . . . 12
|
| 23 | 3, 17, 22 | syl2anc 693 |
. . . . . . . . . . 11
|
| 24 | 23 | unssbd 3791 |
. . . . . . . . . 10
|
| 25 | ssun1 3776 |
. . . . . . . . . . . . . 14
| |
| 26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
|
| 27 | 6, 7 | lspss 18984 |
. . . . . . . . . . . . 13
|
| 28 | 3, 17, 26, 27 | syl3anc 1326 |
. . . . . . . . . . . 12
|
| 29 | 0ss 3972 |
. . . . . . . . . . . . . . 15
| |
| 30 | 29 | a1i 11 |
. . . . . . . . . . . . . 14
|
| 31 | uncom 3757 |
. . . . . . . . . . . . . . . . . 18
| |
| 32 | un0 3967 |
. . . . . . . . . . . . . . . . . 18
| |
| 33 | 31, 32 | eqtri 2644 |
. . . . . . . . . . . . . . . . 17
|
| 34 | 33 | fveq2i 6194 |
. . . . . . . . . . . . . . . 16
|
| 35 | 10, 34 | syl6eleqr 2712 |
. . . . . . . . . . . . . . 15
|
| 36 | lsppratlem1.x2 |
. . . . . . . . . . . . . . . . 17
| |
| 37 | 36 | eldifbd 3587 |
. . . . . . . . . . . . . . . 16
|
| 38 | lsppratlem1.o |
. . . . . . . . . . . . . . . . . 18
| |
| 39 | 38, 7 | lsp0 19009 |
. . . . . . . . . . . . . . . . 17
|
| 40 | 3, 39 | syl 17 |
. . . . . . . . . . . . . . . 16
|
| 41 | 37, 40 | neleqtrrd 2723 |
. . . . . . . . . . . . . . 15
|
| 42 | 35, 41 | eldifd 3585 |
. . . . . . . . . . . . . 14
|
| 43 | 6, 18, 7 | lspsolv 19143 |
. . . . . . . . . . . . . 14
|
| 44 | 1, 30, 4, 42, 43 | syl13anc 1328 |
. . . . . . . . . . . . 13
|
| 45 | uncom 3757 |
. . . . . . . . . . . . . . 15
| |
| 46 | un0 3967 |
. . . . . . . . . . . . . . 15
| |
| 47 | 45, 46 | eqtri 2644 |
. . . . . . . . . . . . . 14
|
| 48 | 47 | fveq2i 6194 |
. . . . . . . . . . . . 13
|
| 49 | 44, 48 | syl6eleq 2711 |
. . . . . . . . . . . 12
|
| 50 | 28, 49 | sseldd 3604 |
. . . . . . . . . . 11
|
| 51 | 50 | snssd 4340 |
. . . . . . . . . 10
|
| 52 | 24, 51 | unssd 3789 |
. . . . . . . . 9
|
| 53 | 21, 52 | syl5eqss 3649 |
. . . . . . . 8
|
| 54 | 18, 7 | lspssp 18988 |
. . . . . . . 8
|
| 55 | 3, 20, 53, 54 | syl3anc 1326 |
. . . . . . 7
|
| 56 | 15, 55 | sstrd 3613 |
. . . . . 6
|
| 57 | 56 | ssdifd 3746 |
. . . . 5
|
| 58 | lsppratlem1.y2 |
. . . . 5
| |
| 59 | 57, 58 | sseldd 3604 |
. . . 4
|
| 60 | 6, 18, 7 | lspsolv 19143 |
. . . 4
|
| 61 | 1, 12, 13, 59, 60 | syl13anc 1328 |
. . 3
|
| 62 | df-pr 4180 |
. . . 4
| |
| 63 | 62 | fveq2i 6194 |
. . 3
|
| 64 | 61, 63 | syl6eleqr 2712 |
. 2
|
| 65 | lspprat.u |
. . . . . . . . . 10
| |
| 66 | 6, 18 | lssss 18937 |
. . . . . . . . . 10
|
| 67 | 65, 66 | syl 17 |
. . . . . . . . 9
|
| 68 | 67 | ssdifssd 3748 |
. . . . . . . 8
|
| 69 | 68, 58 | sseldd 3604 |
. . . . . . 7
|
| 70 | 69 | snssd 4340 |
. . . . . 6
|
| 71 | 12, 70 | unssd 3789 |
. . . . 5
|
| 72 | 62, 71 | syl5eqss 3649 |
. . . 4
|
| 73 | snsspr1 4345 |
. . . . 5
| |
| 74 | 73 | a1i 11 |
. . . 4
|
| 75 | 6, 7 | lspss 18984 |
. . . 4
|
| 76 | 3, 72, 74, 75 | syl3anc 1326 |
. . 3
|
| 77 | 76, 49 | sseldd 3604 |
. 2
|
| 78 | 64, 77 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 |
| This theorem is referenced by: lsppratlem5 19151 |
| Copyright terms: Public domain | W3C validator |