MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbspss Structured version   Visualization version   Unicode version

Theorem lbspss 19082
Description: No proper subset of a basis spans the space. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsind2.j  |-  J  =  (LBasis `  W )
lbsind2.n  |-  N  =  ( LSpan `  W )
lbsind2.f  |-  F  =  (Scalar `  W )
lbsind2.o  |-  .1.  =  ( 1r `  F )
lbsind2.z  |-  .0.  =  ( 0g `  F )
lbspss.v  |-  V  =  ( Base `  W
)
Assertion
Ref Expression
lbspss  |-  ( ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  ->  ( N `  C )  =/=  V
)

Proof of Theorem lbspss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssnel 4039 . . 3  |-  ( C 
C.  B  ->  E. x
( x  e.  B  /\  -.  x  e.  C
) )
213ad2ant3 1084 . 2  |-  ( ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  ->  E. x ( x  e.  B  /\  -.  x  e.  C )
)
3 simpl2 1065 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  B  e.  J )
4 lbspss.v . . . . . . 7  |-  V  =  ( Base `  W
)
5 lbsind2.j . . . . . . 7  |-  J  =  (LBasis `  W )
64, 5lbsss 19077 . . . . . 6  |-  ( B  e.  J  ->  B  C_  V )
73, 6syl 17 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  B  C_  V )
8 simprl 794 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  x  e.  B )
97, 8sseldd 3604 . . . 4  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  x  e.  V )
10 simpl1l 1112 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  W  e.  LMod )
117ssdifssd 3748 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( B  \  {
x } )  C_  V )
12 simpl3 1066 . . . . . . . . . . 11  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  C  C.  B )
1312pssssd 3704 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  C  C_  B )
1413sseld 3602 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( y  e.  C  ->  y  e.  B ) )
15 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  -.  x  e.  C
)
16 eleq1 2689 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
y  e.  C  <->  x  e.  C ) )
1716notbid 308 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( -.  y  e.  C  <->  -.  x  e.  C ) )
1815, 17syl5ibrcom 237 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( y  =  x  ->  -.  y  e.  C ) )
1918necon2ad 2809 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( y  e.  C  ->  y  =/=  x ) )
2014, 19jcad 555 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( y  e.  C  ->  ( y  e.  B  /\  y  =/=  x
) ) )
21 eldifsn 4317 . . . . . . . 8  |-  ( y  e.  ( B  \  { x } )  <-> 
( y  e.  B  /\  y  =/=  x
) )
2220, 21syl6ibr 242 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( y  e.  C  ->  y  e.  ( B 
\  { x }
) ) )
2322ssrdv 3609 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  C  C_  ( B  \  { x } ) )
24 lbsind2.n . . . . . . 7  |-  N  =  ( LSpan `  W )
254, 24lspss 18984 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( B  \  { x }
)  C_  V  /\  C  C_  ( B  \  { x } ) )  ->  ( N `  C )  C_  ( N `  ( B  \  { x } ) ) )
2610, 11, 23, 25syl3anc 1326 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( N `  C
)  C_  ( N `  ( B  \  {
x } ) ) )
27 simpl1r 1113 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  .1.  =/=  .0.  )
28 lbsind2.f . . . . . . 7  |-  F  =  (Scalar `  W )
29 lbsind2.o . . . . . . 7  |-  .1.  =  ( 1r `  F )
30 lbsind2.z . . . . . . 7  |-  .0.  =  ( 0g `  F )
315, 24, 28, 29, 30lbsind2 19081 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  x  e.  B
)  ->  -.  x  e.  ( N `  ( B  \  { x }
) ) )
3210, 27, 3, 8, 31syl211anc 1332 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  -.  x  e.  ( N `  ( B  \  { x } ) ) )
3326, 32ssneldd 3606 . . . 4  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  -.  x  e.  ( N `  C )
)
34 nelne1 2890 . . . 4  |-  ( ( x  e.  V  /\  -.  x  e.  ( N `  C )
)  ->  V  =/=  ( N `  C ) )
359, 33, 34syl2anc 693 . . 3  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  V  =/=  ( N `  C ) )
3635necomd 2849 . 2  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( N `  C
)  =/=  V )
372, 36exlimddv 1863 1  |-  ( ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  ->  ( N `  C )  =/=  V
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    \ cdif 3571    C_ wss 3574    C. wpss 3575   {csn 4177   ` cfv 5888   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   1rcur 18501   LModclmod 18863   LSpanclspn 18971  LBasisclbs 19074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lbs 19075
This theorem is referenced by:  islbs3  19155
  Copyright terms: Public domain W3C validator