MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopeu Structured version   Visualization version   Unicode version

Theorem qtopeu 21519
Description: Universal property of the quotient topology. If  G is a function from  J to  K which is equal on all equivalent elements under  F, then there is a unique continuous map  f : ( J  /  F ) --> K such that  G  =  f  o.  F, and we say that  G "passes to the quotient". (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopeu.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
qtopeu.3  |-  ( ph  ->  F : X -onto-> Y
)
qtopeu.4  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
qtopeu.5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( G `  x )  =  ( G `  y ) )
Assertion
Ref Expression
qtopeu  |-  ( ph  ->  E! f  e.  ( ( J qTop  F )  Cn  K ) G  =  ( f  o.  F ) )
Distinct variable groups:    x, f,
y, F    f, J, x    f, K, x    x, X, y    f, G, x, y    ph, f, x, y   
f, Y, x
Allowed substitution hints:    J( y)    K( y)    X( f)    Y( y)

Proof of Theorem qtopeu
Dummy variables  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qtopeu.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : X -onto-> Y
)
2 fofn 6117 . . . . . . . . . . . . . . . 16  |-  ( F : X -onto-> Y  ->  F  Fn  X )
31, 2syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  Fn  X )
43adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  F  Fn  X )
5 fniniseg 6338 . . . . . . . . . . . . . 14  |-  ( F  Fn  X  ->  (
y  e.  ( `' F " { ( F `  x ) } )  <->  ( y  e.  X  /\  ( F `  y )  =  ( F `  x ) ) ) )
64, 5syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  ( `' F " { ( F `  x ) } )  <->  ( y  e.  X  /\  ( F `  y )  =  ( F `  x ) ) ) )
7 eqcom 2629 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x )  =  ( F `  y )  <->  ( F `  y )  =  ( F `  x ) )
873anbi3i 1255 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  X  /\  y  e.  X  /\  ( F `  x )  =  ( F `  y ) )  <->  ( x  e.  X  /\  y  e.  X  /\  ( F `  y )  =  ( F `  x ) ) )
9 3anass 1042 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  X  /\  y  e.  X  /\  ( F `  y )  =  ( F `  x ) )  <->  ( x  e.  X  /\  (
y  e.  X  /\  ( F `  y )  =  ( F `  x ) ) ) )
108, 9bitri 264 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  X  /\  y  e.  X  /\  ( F `  x )  =  ( F `  y ) )  <->  ( x  e.  X  /\  (
y  e.  X  /\  ( F `  y )  =  ( F `  x ) ) ) )
11 qtopeu.5 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( G `  x )  =  ( G `  y ) )
1210, 11sylan2br 493 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  X  /\  (
y  e.  X  /\  ( F `  y )  =  ( F `  x ) ) ) )  ->  ( G `  x )  =  ( G `  y ) )
1312eqcomd 2628 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  X  /\  (
y  e.  X  /\  ( F `  y )  =  ( F `  x ) ) ) )  ->  ( G `  y )  =  ( G `  x ) )
1413expr 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  (
( y  e.  X  /\  ( F `  y
)  =  ( F `
 x ) )  ->  ( G `  y )  =  ( G `  x ) ) )
156, 14sylbid 230 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  ( `' F " { ( F `  x ) } )  ->  ( G `  y )  =  ( G `  x ) ) )
1615ralrimiv 2965 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  ( `' F " { ( F `  x ) } ) ( G `  y
)  =  ( G `
 x ) )
17 qtopeu.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  J  e.  (TopOn `  X ) )
18 qtopeu.4 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
19 cntop2 21045 . . . . . . . . . . . . . . . . 17  |-  ( G  e.  ( J  Cn  K )  ->  K  e.  Top )
2018, 19syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  K  e.  Top )
21 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  U. K  =  U. K
2221toptopon 20722 . . . . . . . . . . . . . . . 16  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
2320, 22sylib 208 . . . . . . . . . . . . . . 15  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
24 cnf2 21053 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  G  e.  ( J  Cn  K ) )  ->  G : X
--> U. K )
2517, 23, 18, 24syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ph  ->  G : X --> U. K
)
26 ffn 6045 . . . . . . . . . . . . . 14  |-  ( G : X --> U. K  ->  G  Fn  X )
2725, 26syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  G  Fn  X )
2827adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  G  Fn  X )
29 cnvimass 5485 . . . . . . . . . . . . 13  |-  ( `' F " { ( F `  x ) } )  C_  dom  F
30 fof 6115 . . . . . . . . . . . . . . . 16  |-  ( F : X -onto-> Y  ->  F : X --> Y )
311, 30syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : X --> Y )
32 fdm 6051 . . . . . . . . . . . . . . 15  |-  ( F : X --> Y  ->  dom  F  =  X )
3331, 32syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  F  =  X )
3433adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  dom  F  =  X )
3529, 34syl5sseq 3653 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  ( `' F " { ( F `  x ) } )  C_  X
)
36 eqeq1 2626 . . . . . . . . . . . . 13  |-  ( w  =  ( G `  y )  ->  (
w  =  ( G `
 x )  <->  ( G `  y )  =  ( G `  x ) ) )
3736ralima 6498 . . . . . . . . . . . 12  |-  ( ( G  Fn  X  /\  ( `' F " { ( F `  x ) } )  C_  X
)  ->  ( A. w  e.  ( G " ( `' F " { ( F `  x ) } ) ) w  =  ( G `  x )  <->  A. y  e.  ( `' F " { ( F `  x ) } ) ( G `
 y )  =  ( G `  x
) ) )
3828, 35, 37syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  ( A. w  e.  ( G " ( `' F " { ( F `  x ) } ) ) w  =  ( G `  x )  <->  A. y  e.  ( `' F " { ( F `  x ) } ) ( G `
 y )  =  ( G `  x
) ) )
3916, 38mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  A. w  e.  ( G " ( `' F " { ( F `  x ) } ) ) w  =  ( G `  x ) )
40 fdm 6051 . . . . . . . . . . . . . . . 16  |-  ( G : X --> U. K  ->  dom  G  =  X )
4125, 40syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  G  =  X )
4241eleq2d 2687 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  dom  G  <-> 
x  e.  X ) )
4342biimpar 502 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  G )
44 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
45 eqidd 2623 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  =  ( F `  x ) )
46 fniniseg 6338 . . . . . . . . . . . . . . 15  |-  ( F  Fn  X  ->  (
x  e.  ( `' F " { ( F `  x ) } )  <->  ( x  e.  X  /\  ( F `  x )  =  ( F `  x ) ) ) )
474, 46syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  ( `' F " { ( F `  x ) } )  <->  ( x  e.  X  /\  ( F `  x )  =  ( F `  x ) ) ) )
4844, 45, 47mpbir2and 957 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  ( `' F " { ( F `  x ) } ) )
49 inelcm 4032 . . . . . . . . . . . . 13  |-  ( ( x  e.  dom  G  /\  x  e.  ( `' F " { ( F `  x ) } ) )  -> 
( dom  G  i^i  ( `' F " { ( F `  x ) } ) )  =/=  (/) )
5043, 48, 49syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  ( dom  G  i^i  ( `' F " { ( F `  x ) } ) )  =/=  (/) )
51 imadisj 5484 . . . . . . . . . . . . 13  |-  ( ( G " ( `' F " { ( F `  x ) } ) )  =  (/) 
<->  ( dom  G  i^i  ( `' F " { ( F `  x ) } ) )  =  (/) )
5251necon3bii 2846 . . . . . . . . . . . 12  |-  ( ( G " ( `' F " { ( F `  x ) } ) )  =/=  (/) 
<->  ( dom  G  i^i  ( `' F " { ( F `  x ) } ) )  =/=  (/) )
5350, 52sylibr 224 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  ( G " ( `' F " { ( F `  x ) } ) )  =/=  (/) )
54 eqsn 4361 . . . . . . . . . . 11  |-  ( ( G " ( `' F " { ( F `  x ) } ) )  =/=  (/)  ->  ( ( G
" ( `' F " { ( F `  x ) } ) )  =  { ( G `  x ) }  <->  A. w  e.  ( G " ( `' F " { ( F `  x ) } ) ) w  =  ( G `  x ) ) )
5553, 54syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
( G " ( `' F " { ( F `  x ) } ) )  =  { ( G `  x ) }  <->  A. w  e.  ( G " ( `' F " { ( F `  x ) } ) ) w  =  ( G `  x ) ) )
5639, 55mpbird 247 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  ( G " ( `' F " { ( F `  x ) } ) )  =  { ( G `  x ) } )
5756unieqd 4446 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  U. ( G " ( `' F " { ( F `  x ) } ) )  =  U. {
( G `  x
) } )
58 fvex 6201 . . . . . . . . 9  |-  ( G `
 x )  e. 
_V
5958unisn 4451 . . . . . . . 8  |-  U. {
( G `  x
) }  =  ( G `  x )
6057, 59syl6req 2673 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( G `  x )  =  U. ( G "
( `' F " { ( F `  x ) } ) ) )
6160mpteq2dva 4744 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  ( G `  x
) )  =  ( x  e.  X  |->  U. ( G " ( `' F " { ( F `  x ) } ) ) ) )
6225feqmptd 6249 . . . . . 6  |-  ( ph  ->  G  =  ( x  e.  X  |->  ( G `
 x ) ) )
6331ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  Y )
6431feqmptd 6249 . . . . . . 7  |-  ( ph  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
65 eqidd 2623 . . . . . . 7  |-  ( ph  ->  ( w  e.  Y  |-> 
U. ( G "
( `' F " { w } ) ) )  =  ( w  e.  Y  |->  U. ( G " ( `' F " { w } ) ) ) )
66 sneq 4187 . . . . . . . . . 10  |-  ( w  =  ( F `  x )  ->  { w }  =  { ( F `  x ) } )
6766imaeq2d 5466 . . . . . . . . 9  |-  ( w  =  ( F `  x )  ->  ( `' F " { w } )  =  ( `' F " { ( F `  x ) } ) )
6867imaeq2d 5466 . . . . . . . 8  |-  ( w  =  ( F `  x )  ->  ( G " ( `' F " { w } ) )  =  ( G
" ( `' F " { ( F `  x ) } ) ) )
6968unieqd 4446 . . . . . . 7  |-  ( w  =  ( F `  x )  ->  U. ( G " ( `' F " { w } ) )  =  U. ( G " ( `' F " { ( F `  x ) } ) ) )
7063, 64, 65, 69fmptco 6396 . . . . . 6  |-  ( ph  ->  ( ( w  e.  Y  |->  U. ( G "
( `' F " { w } ) ) )  o.  F
)  =  ( x  e.  X  |->  U. ( G " ( `' F " { ( F `  x ) } ) ) ) )
7161, 62, 703eqtr4d 2666 . . . . 5  |-  ( ph  ->  G  =  ( ( w  e.  Y  |->  U. ( G " ( `' F " { w } ) ) )  o.  F ) )
7271, 18eqeltrrd 2702 . . . 4  |-  ( ph  ->  ( ( w  e.  Y  |->  U. ( G "
( `' F " { w } ) ) )  o.  F
)  e.  ( J  Cn  K ) )
7325ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  ( G `  x )  e.  U. K )
7460, 73eqeltrrd 2702 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  U. ( G " ( `' F " { ( F `  x ) } ) )  e.  U. K
)
7574ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  U. ( G " ( `' F " { ( F `  x ) } ) )  e. 
U. K )
7669eqcomd 2628 . . . . . . . . . . 11  |-  ( w  =  ( F `  x )  ->  U. ( G " ( `' F " { ( F `  x ) } ) )  =  U. ( G " ( `' F " { w } ) ) )
7776eqcoms 2630 . . . . . . . . . 10  |-  ( ( F `  x )  =  w  ->  U. ( G " ( `' F " { ( F `  x ) } ) )  =  U. ( G " ( `' F " { w } ) ) )
7877eleq1d 2686 . . . . . . . . 9  |-  ( ( F `  x )  =  w  ->  ( U. ( G " ( `' F " { ( F `  x ) } ) )  e. 
U. K  <->  U. ( G " ( `' F " { w } ) )  e.  U. K
) )
7978cbvfo 6544 . . . . . . . 8  |-  ( F : X -onto-> Y  -> 
( A. x  e.  X  U. ( G
" ( `' F " { ( F `  x ) } ) )  e.  U. K  <->  A. w  e.  Y  U. ( G " ( `' F " { w } ) )  e. 
U. K ) )
801, 79syl 17 . . . . . . 7  |-  ( ph  ->  ( A. x  e.  X  U. ( G
" ( `' F " { ( F `  x ) } ) )  e.  U. K  <->  A. w  e.  Y  U. ( G " ( `' F " { w } ) )  e. 
U. K ) )
8175, 80mpbid 222 . . . . . 6  |-  ( ph  ->  A. w  e.  Y  U. ( G " ( `' F " { w } ) )  e. 
U. K )
82 eqid 2622 . . . . . . 7  |-  ( w  e.  Y  |->  U. ( G " ( `' F " { w } ) ) )  =  ( w  e.  Y  |->  U. ( G " ( `' F " { w } ) ) )
8382fmpt 6381 . . . . . 6  |-  ( A. w  e.  Y  U. ( G " ( `' F " { w } ) )  e. 
U. K  <->  ( w  e.  Y  |->  U. ( G " ( `' F " { w } ) ) ) : Y --> U. K )
8481, 83sylib 208 . . . . 5  |-  ( ph  ->  ( w  e.  Y  |-> 
U. ( G "
( `' F " { w } ) ) ) : Y --> U. K )
85 qtopcn 21517 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K ) )  /\  ( F : X -onto-> Y  /\  ( w  e.  Y  |-> 
U. ( G "
( `' F " { w } ) ) ) : Y --> U. K ) )  -> 
( ( w  e.  Y  |->  U. ( G "
( `' F " { w } ) ) )  e.  ( ( J qTop  F )  Cn  K )  <->  ( (
w  e.  Y  |->  U. ( G " ( `' F " { w } ) ) )  o.  F )  e.  ( J  Cn  K
) ) )
8617, 23, 1, 84, 85syl22anc 1327 . . . 4  |-  ( ph  ->  ( ( w  e.  Y  |->  U. ( G "
( `' F " { w } ) ) )  e.  ( ( J qTop  F )  Cn  K )  <->  ( (
w  e.  Y  |->  U. ( G " ( `' F " { w } ) ) )  o.  F )  e.  ( J  Cn  K
) ) )
8772, 86mpbird 247 . . 3  |-  ( ph  ->  ( w  e.  Y  |-> 
U. ( G "
( `' F " { w } ) ) )  e.  ( ( J qTop  F )  Cn  K ) )
88 coeq1 5279 . . . . 5  |-  ( f  =  ( w  e.  Y  |->  U. ( G "
( `' F " { w } ) ) )  ->  (
f  o.  F )  =  ( ( w  e.  Y  |->  U. ( G " ( `' F " { w } ) ) )  o.  F
) )
8988eqeq2d 2632 . . . 4  |-  ( f  =  ( w  e.  Y  |->  U. ( G "
( `' F " { w } ) ) )  ->  ( G  =  ( f  o.  F )  <->  G  =  ( ( w  e.  Y  |->  U. ( G "
( `' F " { w } ) ) )  o.  F
) ) )
9089rspcev 3309 . . 3  |-  ( ( ( w  e.  Y  |-> 
U. ( G "
( `' F " { w } ) ) )  e.  ( ( J qTop  F )  Cn  K )  /\  G  =  ( (
w  e.  Y  |->  U. ( G " ( `' F " { w } ) ) )  o.  F ) )  ->  E. f  e.  ( ( J qTop  F )  Cn  K ) G  =  ( f  o.  F ) )
9187, 71, 90syl2anc 693 . 2  |-  ( ph  ->  E. f  e.  ( ( J qTop  F )  Cn  K ) G  =  ( f  o.  F ) )
92 eqtr2 2642 . . . 4  |-  ( ( G  =  ( f  o.  F )  /\  G  =  ( g  o.  F ) )  -> 
( f  o.  F
)  =  ( g  o.  F ) )
931adantr 481 . . . . 5  |-  ( (
ph  /\  ( f  e.  ( ( J qTop  F
)  Cn  K )  /\  g  e.  ( ( J qTop  F )  Cn  K ) ) )  ->  F : X -onto-> Y )
94 qtoptopon 21507 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  ( J qTop  F )  e.  (TopOn `  Y ) )
9517, 1, 94syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( J qTop  F )  e.  (TopOn `  Y
) )
9695adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  ( ( J qTop  F
)  Cn  K )  /\  g  e.  ( ( J qTop  F )  Cn  K ) ) )  ->  ( J qTop  F )  e.  (TopOn `  Y ) )
9723adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  ( ( J qTop  F
)  Cn  K )  /\  g  e.  ( ( J qTop  F )  Cn  K ) ) )  ->  K  e.  (TopOn `  U. K ) )
98 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  ( ( J qTop  F
)  Cn  K )  /\  g  e.  ( ( J qTop  F )  Cn  K ) ) )  ->  f  e.  ( ( J qTop  F
)  Cn  K ) )
99 cnf2 21053 . . . . . . 7  |-  ( ( ( J qTop  F )  e.  (TopOn `  Y
)  /\  K  e.  (TopOn `  U. K )  /\  f  e.  ( ( J qTop  F )  Cn  K ) )  ->  f : Y --> U. K )
10096, 97, 98, 99syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( f  e.  ( ( J qTop  F
)  Cn  K )  /\  g  e.  ( ( J qTop  F )  Cn  K ) ) )  ->  f : Y
--> U. K )
101 ffn 6045 . . . . . 6  |-  ( f : Y --> U. K  ->  f  Fn  Y )
102100, 101syl 17 . . . . 5  |-  ( (
ph  /\  ( f  e.  ( ( J qTop  F
)  Cn  K )  /\  g  e.  ( ( J qTop  F )  Cn  K ) ) )  ->  f  Fn  Y )
103 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  ( ( J qTop  F
)  Cn  K )  /\  g  e.  ( ( J qTop  F )  Cn  K ) ) )  ->  g  e.  ( ( J qTop  F
)  Cn  K ) )
104 cnf2 21053 . . . . . . 7  |-  ( ( ( J qTop  F )  e.  (TopOn `  Y
)  /\  K  e.  (TopOn `  U. K )  /\  g  e.  ( ( J qTop  F )  Cn  K ) )  ->  g : Y --> U. K )
10596, 97, 103, 104syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( f  e.  ( ( J qTop  F
)  Cn  K )  /\  g  e.  ( ( J qTop  F )  Cn  K ) ) )  ->  g : Y
--> U. K )
106 ffn 6045 . . . . . 6  |-  ( g : Y --> U. K  ->  g  Fn  Y )
107105, 106syl 17 . . . . 5  |-  ( (
ph  /\  ( f  e.  ( ( J qTop  F
)  Cn  K )  /\  g  e.  ( ( J qTop  F )  Cn  K ) ) )  ->  g  Fn  Y )
108 cocan2 6547 . . . . 5  |-  ( ( F : X -onto-> Y  /\  f  Fn  Y  /\  g  Fn  Y
)  ->  ( (
f  o.  F )  =  ( g  o.  F )  <->  f  =  g ) )
10993, 102, 107, 108syl3anc 1326 . . . 4  |-  ( (
ph  /\  ( f  e.  ( ( J qTop  F
)  Cn  K )  /\  g  e.  ( ( J qTop  F )  Cn  K ) ) )  ->  ( (
f  o.  F )  =  ( g  o.  F )  <->  f  =  g ) )
11092, 109syl5ib 234 . . 3  |-  ( (
ph  /\  ( f  e.  ( ( J qTop  F
)  Cn  K )  /\  g  e.  ( ( J qTop  F )  Cn  K ) ) )  ->  ( ( G  =  ( f  o.  F )  /\  G  =  ( g  o.  F ) )  -> 
f  =  g ) )
111110ralrimivva 2971 . 2  |-  ( ph  ->  A. f  e.  ( ( J qTop  F )  Cn  K ) A. g  e.  ( ( J qTop  F )  Cn  K
) ( ( G  =  ( f  o.  F )  /\  G  =  ( g  o.  F ) )  -> 
f  =  g ) )
112 coeq1 5279 . . . 4  |-  ( f  =  g  ->  (
f  o.  F )  =  ( g  o.  F ) )
113112eqeq2d 2632 . . 3  |-  ( f  =  g  ->  ( G  =  ( f  o.  F )  <->  G  =  ( g  o.  F
) ) )
114113reu4 3400 . 2  |-  ( E! f  e.  ( ( J qTop  F )  Cn  K ) G  =  ( f  o.  F
)  <->  ( E. f  e.  ( ( J qTop  F
)  Cn  K ) G  =  ( f  o.  F )  /\  A. f  e.  ( ( J qTop  F )  Cn  K ) A. g  e.  ( ( J qTop  F
)  Cn  K ) ( ( G  =  ( f  o.  F
)  /\  G  =  ( g  o.  F
) )  ->  f  =  g ) ) )
11591, 111, 114sylanbrc 698 1  |-  ( ph  ->  E! f  e.  ( ( J qTop  F )  Cn  K ) G  =  ( f  o.  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   "cima 5117    o. ccom 5118    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   qTop cqtop 16163   Topctop 20698  TopOnctopon 20715    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-qtop 16167  df-top 20699  df-topon 20716  df-cn 21031
This theorem is referenced by:  qtophmeo  21620
  Copyright terms: Public domain W3C validator