MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopss Structured version   Visualization version   Unicode version

Theorem qtopss 21518
Description: A surjective continuous function from  J to  K induces a topology  J qTop  F on the base set of  K. This topology is in general finer than  K. Together with qtopid 21508, this implies that  J qTop  F is the finest topology making  F continuous, i.e. the final topology with respect to the family  { F }. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
qtopss  |-  ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y
)  /\  ran  F  =  Y )  ->  K  C_  ( J qTop  F ) )

Proof of Theorem qtopss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 toponss 20731 . . . . 5  |-  ( ( K  e.  (TopOn `  Y )  /\  x  e.  K )  ->  x  C_  Y )
213ad2antl2 1224 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  x  C_  Y )
3 cnima 21069 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  x  e.  K )  ->  ( `' F "
x )  e.  J
)
433ad2antl1 1223 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  ( `' F "
x )  e.  J
)
5 simpl1 1064 . . . . . . 7  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  F  e.  ( J  Cn  K ) )
6 cntop1 21044 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
75, 6syl 17 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  J  e.  Top )
8 eqid 2622 . . . . . . 7  |-  U. J  =  U. J
98toptopon 20722 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
107, 9sylib 208 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  J  e.  (TopOn `  U. J ) )
11 simpl2 1065 . . . . . . . 8  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  K  e.  (TopOn `  Y ) )
12 cnf2 21053 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  U. J )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) )  ->  F : U. J
--> Y )
1310, 11, 5, 12syl3anc 1326 . . . . . . 7  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  F : U. J --> Y )
14 ffn 6045 . . . . . . 7  |-  ( F : U. J --> Y  ->  F  Fn  U. J )
1513, 14syl 17 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  F  Fn  U. J
)
16 simpl3 1066 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  ran  F  =  Y )
17 df-fo 5894 . . . . . 6  |-  ( F : U. J -onto-> Y  <->  ( F  Fn  U. J  /\  ran  F  =  Y ) )
1815, 16, 17sylanbrc 698 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  F : U. J -onto-> Y )
19 elqtop3 21506 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F : U. J -onto-> Y )  ->  ( x  e.  ( J qTop  F )  <-> 
( x  C_  Y  /\  ( `' F "
x )  e.  J
) ) )
2010, 18, 19syl2anc 693 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  ( x  e.  ( J qTop  F )  <->  ( x  C_  Y  /\  ( `' F " x )  e.  J ) ) )
212, 4, 20mpbir2and 957 . . 3  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  x  e.  ( J qTop 
F ) )
2221ex 450 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y
)  /\  ran  F  =  Y )  ->  (
x  e.  K  ->  x  e.  ( J qTop  F ) ) )
2322ssrdv 3609 1  |-  ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y
)  /\  ran  F  =  Y )  ->  K  C_  ( J qTop  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   U.cuni 4436   `'ccnv 5113   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   qTop cqtop 16163   Topctop 20698  TopOnctopon 20715    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-qtop 16167  df-top 20699  df-topon 20716  df-cn 21031
This theorem is referenced by:  qtoprest  21520  qtopomap  21521  qtopcmap  21522
  Copyright terms: Public domain W3C validator