MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopomap Structured version   Visualization version   Unicode version

Theorem qtopomap 21521
Description: If  F is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopomap.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
qtopomap.5  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
qtopomap.6  |-  ( ph  ->  ran  F  =  Y )
qtopomap.7  |-  ( (
ph  /\  x  e.  J )  ->  ( F " x )  e.  K )
Assertion
Ref Expression
qtopomap  |-  ( ph  ->  K  =  ( J qTop 
F ) )
Distinct variable groups:    x, F    x, J    x, K    ph, x    x, Y

Proof of Theorem qtopomap
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 qtopomap.5 . . 3  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2 qtopomap.4 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 qtopomap.6 . . 3  |-  ( ph  ->  ran  F  =  Y )
4 qtopss 21518 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y
)  /\  ran  F  =  Y )  ->  K  C_  ( J qTop  F ) )
51, 2, 3, 4syl3anc 1326 . 2  |-  ( ph  ->  K  C_  ( J qTop  F ) )
6 cntop1 21044 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
71, 6syl 17 . . . . . 6  |-  ( ph  ->  J  e.  Top )
8 eqid 2622 . . . . . . 7  |-  U. J  =  U. J
98toptopon 20722 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
107, 9sylib 208 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
11 cnf2 21053 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  U. J )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) )  ->  F : U. J
--> Y )
1210, 2, 1, 11syl3anc 1326 . . . . . . 7  |-  ( ph  ->  F : U. J --> Y )
13 ffn 6045 . . . . . . 7  |-  ( F : U. J --> Y  ->  F  Fn  U. J )
1412, 13syl 17 . . . . . 6  |-  ( ph  ->  F  Fn  U. J
)
15 df-fo 5894 . . . . . 6  |-  ( F : U. J -onto-> Y  <->  ( F  Fn  U. J  /\  ran  F  =  Y ) )
1614, 3, 15sylanbrc 698 . . . . 5  |-  ( ph  ->  F : U. J -onto-> Y )
17 elqtop3 21506 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F : U. J -onto-> Y )  ->  ( y  e.  ( J qTop  F )  <-> 
( y  C_  Y  /\  ( `' F "
y )  e.  J
) ) )
1810, 16, 17syl2anc 693 . . . 4  |-  ( ph  ->  ( y  e.  ( J qTop  F )  <->  ( y  C_  Y  /\  ( `' F " y )  e.  J ) ) )
19 foimacnv 6154 . . . . . . . 8  |-  ( ( F : U. J -onto-> Y  /\  y  C_  Y
)  ->  ( F " ( `' F "
y ) )  =  y )
2016, 19sylan 488 . . . . . . 7  |-  ( (
ph  /\  y  C_  Y )  ->  ( F " ( `' F " y ) )  =  y )
2120adantrr 753 . . . . . 6  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( F "
( `' F "
y ) )  =  y )
22 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( `' F " y )  e.  J
)
23 qtopomap.7 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  J )  ->  ( F " x )  e.  K )
2423ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. x  e.  J  ( F " x )  e.  K )
2524adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  A. x  e.  J  ( F " x )  e.  K )
26 imaeq2 5462 . . . . . . . . 9  |-  ( x  =  ( `' F " y )  ->  ( F " x )  =  ( F " ( `' F " y ) ) )
2726eleq1d 2686 . . . . . . . 8  |-  ( x  =  ( `' F " y )  ->  (
( F " x
)  e.  K  <->  ( F " ( `' F "
y ) )  e.  K ) )
2827rspcv 3305 . . . . . . 7  |-  ( ( `' F " y )  e.  J  ->  ( A. x  e.  J  ( F " x )  e.  K  ->  ( F " ( `' F " y ) )  e.  K ) )
2922, 25, 28sylc 65 . . . . . 6  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  ( F "
( `' F "
y ) )  e.  K )
3021, 29eqeltrrd 2702 . . . . 5  |-  ( (
ph  /\  ( y  C_  Y  /\  ( `' F " y )  e.  J ) )  ->  y  e.  K
)
3130ex 450 . . . 4  |-  ( ph  ->  ( ( y  C_  Y  /\  ( `' F " y )  e.  J
)  ->  y  e.  K ) )
3218, 31sylbid 230 . . 3  |-  ( ph  ->  ( y  e.  ( J qTop  F )  -> 
y  e.  K ) )
3332ssrdv 3609 . 2  |-  ( ph  ->  ( J qTop  F ) 
C_  K )
345, 33eqssd 3620 1  |-  ( ph  ->  K  =  ( J qTop 
F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   U.cuni 4436   `'ccnv 5113   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   qTop cqtop 16163   Topctop 20698  TopOnctopon 20715    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-qtop 16167  df-top 20699  df-topon 20716  df-cn 21031
This theorem is referenced by:  hmeoqtop  21578
  Copyright terms: Public domain W3C validator