| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qtopcmap | Structured version Visualization version Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| qtopomap.4 |
|
| qtopomap.5 |
|
| qtopomap.6 |
|
| qtopcmap.7 |
|
| Ref | Expression |
|---|---|
| qtopcmap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopomap.5 |
. . 3
| |
| 2 | qtopomap.4 |
. . 3
| |
| 3 | qtopomap.6 |
. . 3
| |
| 4 | qtopss 21518 |
. . 3
| |
| 5 | 1, 2, 3, 4 | syl3anc 1326 |
. 2
|
| 6 | cntop1 21044 |
. . . . . 6
| |
| 7 | 1, 6 | syl 17 |
. . . . 5
|
| 8 | eqid 2622 |
. . . . . . . . . 10
| |
| 9 | 8 | toptopon 20722 |
. . . . . . . . 9
|
| 10 | 7, 9 | sylib 208 |
. . . . . . . 8
|
| 11 | cnf2 21053 |
. . . . . . . 8
| |
| 12 | 10, 2, 1, 11 | syl3anc 1326 |
. . . . . . 7
|
| 13 | ffn 6045 |
. . . . . . 7
| |
| 14 | 12, 13 | syl 17 |
. . . . . 6
|
| 15 | df-fo 5894 |
. . . . . 6
| |
| 16 | 14, 3, 15 | sylanbrc 698 |
. . . . 5
|
| 17 | 8 | elqtop2 21504 |
. . . . 5
|
| 18 | 7, 16, 17 | syl2anc 693 |
. . . 4
|
| 19 | 16 | adantr 481 |
. . . . . . . . 9
|
| 20 | difss 3737 |
. . . . . . . . 9
| |
| 21 | foimacnv 6154 |
. . . . . . . . 9
| |
| 22 | 19, 20, 21 | sylancl 694 |
. . . . . . . 8
|
| 23 | 2 | adantr 481 |
. . . . . . . . . 10
|
| 24 | toponuni 20719 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | syl 17 |
. . . . . . . . 9
|
| 26 | 25 | difeq1d 3727 |
. . . . . . . 8
|
| 27 | 22, 26 | eqtrd 2656 |
. . . . . . 7
|
| 28 | fofun 6116 |
. . . . . . . . . . 11
| |
| 29 | funcnvcnv 5956 |
. . . . . . . . . . 11
| |
| 30 | imadif 5973 |
. . . . . . . . . . 11
| |
| 31 | 19, 28, 29, 30 | 4syl 19 |
. . . . . . . . . 10
|
| 32 | 12 | adantr 481 |
. . . . . . . . . . . 12
|
| 33 | fimacnv 6347 |
. . . . . . . . . . . 12
| |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . 11
|
| 35 | 34 | difeq1d 3727 |
. . . . . . . . . 10
|
| 36 | 31, 35 | eqtrd 2656 |
. . . . . . . . 9
|
| 37 | 7 | adantr 481 |
. . . . . . . . . 10
|
| 38 | simprr 796 |
. . . . . . . . . 10
| |
| 39 | 8 | opncld 20837 |
. . . . . . . . . 10
|
| 40 | 37, 38, 39 | syl2anc 693 |
. . . . . . . . 9
|
| 41 | 36, 40 | eqeltrd 2701 |
. . . . . . . 8
|
| 42 | qtopcmap.7 |
. . . . . . . . . 10
| |
| 43 | 42 | ralrimiva 2966 |
. . . . . . . . 9
|
| 44 | 43 | adantr 481 |
. . . . . . . 8
|
| 45 | imaeq2 5462 |
. . . . . . . . . 10
| |
| 46 | 45 | eleq1d 2686 |
. . . . . . . . 9
|
| 47 | 46 | rspcv 3305 |
. . . . . . . 8
|
| 48 | 41, 44, 47 | sylc 65 |
. . . . . . 7
|
| 49 | 27, 48 | eqeltrrd 2702 |
. . . . . 6
|
| 50 | topontop 20718 |
. . . . . . . 8
| |
| 51 | 23, 50 | syl 17 |
. . . . . . 7
|
| 52 | simprl 794 |
. . . . . . . 8
| |
| 53 | 52, 25 | sseqtrd 3641 |
. . . . . . 7
|
| 54 | eqid 2622 |
. . . . . . . 8
| |
| 55 | 54 | isopn2 20836 |
. . . . . . 7
|
| 56 | 51, 53, 55 | syl2anc 693 |
. . . . . 6
|
| 57 | 49, 56 | mpbird 247 |
. . . . 5
|
| 58 | 57 | ex 450 |
. . . 4
|
| 59 | 18, 58 | sylbid 230 |
. . 3
|
| 60 | 59 | ssrdv 3609 |
. 2
|
| 61 | 5, 60 | eqssd 3620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-qtop 16167 df-top 20699 df-topon 20716 df-cld 20823 df-cn 21031 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |