MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rediv Structured version   Visualization version   Unicode version

Theorem rediv 13871
Description: Real part of a division. Related to remul2 13870. (Contributed by David A. Wheeler, 10-Jun-2015.)
Assertion
Ref Expression
rediv  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
Re `  ( A  /  B ) )  =  ( ( Re `  A )  /  B
) )

Proof of Theorem rediv
StepHypRef Expression
1 ancom 466 . . . . 5  |-  ( ( ( B  e.  RR  /\  B  =/=  0 )  /\  A  e.  CC ) 
<->  ( A  e.  CC  /\  ( B  e.  RR  /\  B  =/=  0 ) ) )
2 3anass 1042 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  <->  ( A  e.  CC  /\  ( B  e.  RR  /\  B  =/=  0 ) ) )
31, 2bitr4i 267 . . . 4  |-  ( ( ( B  e.  RR  /\  B  =/=  0 )  /\  A  e.  CC ) 
<->  ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 ) )
4 rereccl 10743 . . . . 5  |-  ( ( B  e.  RR  /\  B  =/=  0 )  -> 
( 1  /  B
)  e.  RR )
54anim1i 592 . . . 4  |-  ( ( ( B  e.  RR  /\  B  =/=  0 )  /\  A  e.  CC )  ->  ( ( 1  /  B )  e.  RR  /\  A  e.  CC ) )
63, 5sylbir 225 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
( 1  /  B
)  e.  RR  /\  A  e.  CC )
)
7 remul2 13870 . . 3  |-  ( ( ( 1  /  B
)  e.  RR  /\  A  e.  CC )  ->  ( Re `  (
( 1  /  B
)  x.  A ) )  =  ( ( 1  /  B )  x.  ( Re `  A ) ) )
86, 7syl 17 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
Re `  ( (
1  /  B )  x.  A ) )  =  ( ( 1  /  B )  x.  ( Re `  A
) ) )
9 recn 10026 . . 3  |-  ( B  e.  RR  ->  B  e.  CC )
10 divrec2 10702 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  /  B )  =  ( ( 1  /  B )  x.  A
) )
1110fveq2d 6195 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  (
Re `  ( A  /  B ) )  =  ( Re `  (
( 1  /  B
)  x.  A ) ) )
129, 11syl3an2 1360 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
Re `  ( A  /  B ) )  =  ( Re `  (
( 1  /  B
)  x.  A ) ) )
13 recl 13850 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
1413recnd 10068 . . . 4  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
15143ad2ant1 1082 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
Re `  A )  e.  CC )
1693ad2ant2 1083 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  B  e.  CC )
17 simp3 1063 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  B  =/=  0 )
1815, 16, 17divrec2d 10805 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
( Re `  A
)  /  B )  =  ( ( 1  /  B )  x.  ( Re `  A
) ) )
198, 12, 183eqtr4d 2666 1  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
Re `  ( A  /  B ) )  =  ( ( Re `  A )  /  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    / cdiv 10684   Recre 13837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  redivd  13969
  Copyright terms: Public domain W3C validator