MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resima2 Structured version   Visualization version   Unicode version

Theorem resima2 5432
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.)
Assertion
Ref Expression
resima2  |-  ( B 
C_  C  ->  (
( A  |`  C )
" B )  =  ( A " B
) )

Proof of Theorem resima2
StepHypRef Expression
1 sseqin2 3817 . . . 4  |-  ( B 
C_  C  <->  ( C  i^i  B )  =  B )
2 reseq2 5391 . . . 4  |-  ( ( C  i^i  B )  =  B  ->  ( A  |`  ( C  i^i  B ) )  =  ( A  |`  B )
)
31, 2sylbi 207 . . 3  |-  ( B 
C_  C  ->  ( A  |`  ( C  i^i  B ) )  =  ( A  |`  B )
)
43rneqd 5353 . 2  |-  ( B 
C_  C  ->  ran  ( A  |`  ( C  i^i  B ) )  =  ran  ( A  |`  B ) )
5 df-ima 5127 . . 3  |-  ( ( A  |`  C ) " B )  =  ran  ( ( A  |`  C )  |`  B )
6 resres 5409 . . . 4  |-  ( ( A  |`  C )  |`  B )  =  ( A  |`  ( C  i^i  B ) )
76rneqi 5352 . . 3  |-  ran  (
( A  |`  C )  |`  B )  =  ran  ( A  |`  ( C  i^i  B ) )
85, 7eqtri 2644 . 2  |-  ( ( A  |`  C ) " B )  =  ran  ( A  |`  ( C  i^i  B ) )
9 df-ima 5127 . 2  |-  ( A
" B )  =  ran  ( A  |`  B )
104, 8, 93eqtr4g 2681 1  |-  ( B 
C_  C  ->  (
( A  |`  C )
" B )  =  ( A " B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    i^i cin 3573    C_ wss 3574   ran crn 5115    |` cres 5116   "cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  ressuppss  7314  ressuppssdif  7316  marypha1lem  8339  ackbij2lem3  9063  dmdprdsplit2lem  18444  cnpresti  21092  cnprest  21093  limcflf  23645  limcresi  23649  limciun  23658  efopnlem2  24403  cvmopnlem  31260  cvmlift2lem9a  31285  poimirlem4  33413  limsupresre  39928  limsupresico  39932  liminfresico  40003
  Copyright terms: Public domain W3C validator