MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzres Structured version   Visualization version   Unicode version

Theorem gsumzres 18310
Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumzcl.b  |-  B  =  ( Base `  G
)
gsumzcl.0  |-  .0.  =  ( 0g `  G )
gsumzcl.z  |-  Z  =  (Cntz `  G )
gsumzcl.g  |-  ( ph  ->  G  e.  Mnd )
gsumzcl.a  |-  ( ph  ->  A  e.  V )
gsumzcl.f  |-  ( ph  ->  F : A --> B )
gsumzcl.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzres.s  |-  ( ph  ->  ( F supp  .0.  )  C_  W )
gsumzres.w  |-  ( ph  ->  F finSupp  .0.  )
Assertion
Ref Expression
gsumzres  |-  ( ph  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) )

Proof of Theorem gsumzres
Dummy variables  f 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.g . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
2 gsumzcl.a . . . . . . . 8  |-  ( ph  ->  A  e.  V )
3 inex1g 4801 . . . . . . . 8  |-  ( A  e.  V  ->  ( A  i^i  W )  e. 
_V )
42, 3syl 17 . . . . . . 7  |-  ( ph  ->  ( A  i^i  W
)  e.  _V )
5 gsumzcl.0 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
65gsumz 17374 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( A  i^i  W )  e.  _V )  -> 
( G  gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) )  =  .0.  )
71, 4, 6syl2anc 693 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) )  =  .0.  )
85gsumz 17374 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
91, 2, 8syl2anc 693 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
107, 9eqtr4d 2659 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
1110adantr 481 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
12 resres 5409 . . . . . . . 8  |-  ( ( F  |`  A )  |`  W )  =  ( F  |`  ( A  i^i  W ) )
13 gsumzcl.f . . . . . . . . . 10  |-  ( ph  ->  F : A --> B )
14 ffn 6045 . . . . . . . . . 10  |-  ( F : A --> B  ->  F  Fn  A )
15 fnresdm 6000 . . . . . . . . . 10  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
1613, 14, 153syl 18 . . . . . . . . 9  |-  ( ph  ->  ( F  |`  A )  =  F )
1716reseq1d 5395 . . . . . . . 8  |-  ( ph  ->  ( ( F  |`  A )  |`  W )  =  ( F  |`  W ) )
1812, 17syl5eqr 2670 . . . . . . 7  |-  ( ph  ->  ( F  |`  ( A  i^i  W ) )  =  ( F  |`  W ) )
1918adantr 481 . . . . . 6  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( F  |`  ( A  i^i  W ) )  =  ( F  |`  W ) )
20 fvex 6201 . . . . . . . . . . 11  |-  ( 0g
`  G )  e. 
_V
215, 20eqeltri 2697 . . . . . . . . . 10  |-  .0.  e.  _V
2221a1i 11 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  _V )
23 ssid 3624 . . . . . . . . . 10  |-  ( F supp 
.0.  )  C_  ( F supp  .0.  )
2423a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( F supp  .0.  )  C_  ( F supp  .0.  )
)
2513, 2, 22, 24gsumcllem 18309 . . . . . . . 8  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  )
)
2625reseq1d 5395 . . . . . . 7  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( F  |`  ( A  i^i  W ) )  =  ( ( k  e.  A  |->  .0.  )  |`  ( A  i^i  W
) ) )
27 inss1 3833 . . . . . . . 8  |-  ( A  i^i  W )  C_  A
28 resmpt 5449 . . . . . . . 8  |-  ( ( A  i^i  W ) 
C_  A  ->  (
( k  e.  A  |->  .0.  )  |`  ( A  i^i  W ) )  =  ( k  e.  ( A  i^i  W
)  |->  .0.  ) )
2927, 28ax-mp 5 . . . . . . 7  |-  ( ( k  e.  A  |->  .0.  )  |`  ( A  i^i  W ) )  =  ( k  e.  ( A  i^i  W ) 
|->  .0.  )
3026, 29syl6eq 2672 . . . . . 6  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( F  |`  ( A  i^i  W ) )  =  ( k  e.  ( A  i^i  W
)  |->  .0.  ) )
3119, 30eqtr3d 2658 . . . . 5  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( F  |`  W )  =  ( k  e.  ( A  i^i  W
)  |->  .0.  ) )
3231oveq2d 6666 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) ) )
3325oveq2d 6666 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
3411, 32, 333eqtr4d 2666 . . 3  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) )
3534ex 450 . 2  |-  ( ph  ->  ( ( F supp  .0.  )  =  (/)  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) ) )
36 f1ofo 6144 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-onto-> ( F supp  .0.  )
)
37 forn 6118 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-onto-> ( F supp  .0.  )  ->  ran  f  =  ( F supp  .0.  ) )
3836, 37syl 17 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  ran  f  =  ( F supp 
.0.  ) )
3938ad2antll 765 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  f  =  ( F supp  .0.  )
)
40 gsumzres.s . . . . . . . . . . 11  |-  ( ph  ->  ( F supp  .0.  )  C_  W )
4140adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  W )
4239, 41eqsstrd 3639 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  f  C_  W )
43 cores 5638 . . . . . . . . 9  |-  ( ran  f  C_  W  ->  ( ( F  |`  W )  o.  f )  =  ( F  o.  f
) )
4442, 43syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( ( F  |`  W )  o.  f )  =  ( F  o.  f ) )
4544seqeq3d 12809 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  seq 1
( ( +g  `  G
) ,  ( ( F  |`  W )  o.  f ) )  =  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) )
4645fveq1d 6193 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( ( F  |`  W )  o.  f ) ) `
 ( # `  ( F supp  .0.  ) ) )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( F supp  .0.  ) ) ) )
47 gsumzcl.b . . . . . . 7  |-  B  =  ( Base `  G
)
48 eqid 2622 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
49 gsumzcl.z . . . . . . 7  |-  Z  =  (Cntz `  G )
501adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  G  e.  Mnd )
514adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( A  i^i  W )  e.  _V )
5213adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  F : A
--> B )
53 fssres 6070 . . . . . . . . 9  |-  ( ( F : A --> B  /\  ( A  i^i  W ) 
C_  A )  -> 
( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B )
5452, 27, 53sylancl 694 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F  |`  ( A  i^i  W
) ) : ( A  i^i  W ) --> B )
5518feq1d 6030 . . . . . . . . 9  |-  ( ph  ->  ( ( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B  <-> 
( F  |`  W ) : ( A  i^i  W ) --> B ) )
5655biimpa 501 . . . . . . . 8  |-  ( (
ph  /\  ( F  |`  ( A  i^i  W
) ) : ( A  i^i  W ) --> B )  ->  ( F  |`  W ) : ( A  i^i  W
) --> B )
5754, 56syldan 487 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F  |`  W ) : ( A  i^i  W ) --> B )
58 gsumzcl.c . . . . . . . . 9  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
59 resss 5422 . . . . . . . . . 10  |-  ( F  |`  W )  C_  F
60 rnss 5354 . . . . . . . . . 10  |-  ( ( F  |`  W )  C_  F  ->  ran  ( F  |`  W )  C_  ran  F )
6159, 60ax-mp 5 . . . . . . . . 9  |-  ran  ( F  |`  W )  C_  ran  F
6249cntzidss 17770 . . . . . . . . 9  |-  ( ( ran  F  C_  ( Z `  ran  F )  /\  ran  ( F  |`  W )  C_  ran  F )  ->  ran  ( F  |`  W )  C_  ( Z `  ran  ( F  |`  W ) ) )
6358, 61, 62sylancl 694 . . . . . . . 8  |-  ( ph  ->  ran  ( F  |`  W )  C_  ( Z `  ran  ( F  |`  W ) ) )
6463adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  ( F  |`  W )  C_  ( Z `  ran  ( F  |`  W ) ) )
65 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( # `  ( F supp  .0.  ) )  e.  NN )
66 f1of1 6136 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( F supp  .0.  )
)
6766ad2antll 765 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-> ( F supp  .0.  ) )
68 suppssdm 7308 . . . . . . . . . . 11  |-  ( F supp 
.0.  )  C_  dom  F
69 fdm 6051 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  dom  F  =  A )
7013, 69syl 17 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  =  A )
7168, 70syl5sseq 3653 . . . . . . . . . 10  |-  ( ph  ->  ( F supp  .0.  )  C_  A )
7271, 40ssind 3837 . . . . . . . . 9  |-  ( ph  ->  ( F supp  .0.  )  C_  ( A  i^i  W
) )
7372adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  ( A  i^i  W ) )
74 f1ss 6106 . . . . . . . 8  |-  ( ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( F supp  .0.  )  /\  ( F supp  .0.  )  C_  ( A  i^i  W
) )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( A  i^i  W
) )
7567, 73, 74syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-> ( A  i^i  W ) )
76 fex 6490 . . . . . . . . . . . . 13  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
7713, 2, 76syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  _V )
78 ressuppss 7314 . . . . . . . . . . . 12  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( ( F  |`  W ) supp  .0.  )  C_  ( F supp  .0.  )
)
7977, 21, 78sylancl 694 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F  |`  W ) supp  .0.  )  C_  ( F supp  .0.  )
)
80 sseq2 3627 . . . . . . . . . . 11  |-  ( ran  f  =  ( F supp 
.0.  )  ->  (
( ( F  |`  W ) supp  .0.  )  C_ 
ran  f  <->  ( ( F  |`  W ) supp  .0.  )  C_  ( F supp  .0.  ) ) )
8179, 80syl5ibr 236 . . . . . . . . . 10  |-  ( ran  f  =  ( F supp 
.0.  )  ->  ( ph  ->  ( ( F  |`  W ) supp  .0.  )  C_ 
ran  f ) )
8236, 37, 813syl 18 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  (
ph  ->  ( ( F  |`  W ) supp  .0.  )  C_ 
ran  f ) )
8382adantl 482 . . . . . . . 8  |-  ( ( ( # `  ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp 
.0.  ) )  -> 
( ph  ->  ( ( F  |`  W ) supp  .0.  )  C_  ran  f
) )
8483impcom 446 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( ( F  |`  W ) supp  .0.  )  C_  ran  f )
85 eqid 2622 . . . . . . 7  |-  ( ( ( F  |`  W )  o.  f ) supp  .0.  )  =  ( (
( F  |`  W )  o.  f ) supp  .0.  )
8647, 5, 48, 49, 50, 51, 57, 64, 65, 75, 84, 85gsumval3 18308 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  ( F  |`  W )
)  =  (  seq 1 ( ( +g  `  G ) ,  ( ( F  |`  W )  o.  f ) ) `
 ( # `  ( F supp  .0.  ) ) ) )
872adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  A  e.  V )
8858adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  F  C_  ( Z `  ran  F
) )
8971adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  A )
90 f1ss 6106 . . . . . . . 8  |-  ( ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( F supp  .0.  )  /\  ( F supp  .0.  )  C_  A )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> A )
9167, 89, 90syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-> A
)
9223, 39syl5sseqr 3654 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  ran  f )
93 eqid 2622 . . . . . . 7  |-  ( ( F  o.  f ) supp 
.0.  )  =  ( ( F  o.  f
) supp  .0.  )
9447, 5, 48, 49, 50, 87, 52, 88, 65, 91, 92, 93gsumval3 18308 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  F )  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( F supp  .0.  )
) ) )
9546, 86, 943eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  ( F  |`  W )
)  =  ( G 
gsumg  F ) )
9695expr 643 . . . 4  |-  ( (
ph  /\  ( # `  ( F supp  .0.  ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) ) )
9796exlimdv 1861 . . 3  |-  ( (
ph  /\  ( # `  ( F supp  .0.  ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp 
.0.  )  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) ) )
9897expimpd 629 . 2  |-  ( ph  ->  ( ( ( # `  ( F supp  .0.  )
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )
)  ->  ( G  gsumg  ( F  |`  W )
)  =  ( G 
gsumg  F ) ) )
99 gsumzres.w . . 3  |-  ( ph  ->  F finSupp  .0.  )
100 fsuppimp 8281 . . . 4  |-  ( F finSupp  .0.  ->  ( Fun  F  /\  ( F supp  .0.  )  e.  Fin ) )
101100simprd 479 . . 3  |-  ( F finSupp  .0.  ->  ( F supp  .0.  )  e.  Fin )
102 fz1f1o 14441 . . 3  |-  ( ( F supp  .0.  )  e.  Fin  ->  ( ( F supp 
.0.  )  =  (/)  \/  ( ( # `  ( F supp  .0.  ) )  e.  NN  /\  E. f 
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
) )
10399, 101, 1023syl 18 . 2  |-  ( ph  ->  ( ( F supp  .0.  )  =  (/)  \/  (
( # `  ( F supp 
.0.  ) )  e.  NN  /\  E. f 
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
) )
10435, 98, 103mpjaod 396 1  |-  ( ph  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275   1c1 9937   NNcn 11020   ...cfz 12326    seqcseq 12801   #chash 13117   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cntz 17750
This theorem is referenced by:  gsumres  18314  gsumzsplit  18327  gsumpt  18361  dmdprdsplitlem  18436  dpjidcl  18457  mplcoe5  19468
  Copyright terms: Public domain W3C validator