| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumzadd | Structured version Visualization version Unicode version | ||
| Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsumzadd.b |
|
| gsumzadd.0 |
|
| gsumzadd.p |
|
| gsumzadd.z |
|
| gsumzadd.g |
|
| gsumzadd.a |
|
| gsumzadd.fn |
|
| gsumzadd.hn |
|
| gsumzadd.s |
|
| gsumzadd.c |
|
| gsumzadd.f |
|
| gsumzadd.h |
|
| Ref | Expression |
|---|---|
| gsumzadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzadd.b |
. 2
| |
| 2 | gsumzadd.0 |
. 2
| |
| 3 | gsumzadd.p |
. 2
| |
| 4 | gsumzadd.z |
. 2
| |
| 5 | gsumzadd.g |
. 2
| |
| 6 | gsumzadd.a |
. 2
| |
| 7 | gsumzadd.fn |
. 2
| |
| 8 | gsumzadd.hn |
. 2
| |
| 9 | eqid 2622 |
. 2
| |
| 10 | gsumzadd.f |
. . 3
| |
| 11 | gsumzadd.s |
. . . 4
| |
| 12 | 1 | submss 17350 |
. . . 4
|
| 13 | 11, 12 | syl 17 |
. . 3
|
| 14 | 10, 13 | fssd 6057 |
. 2
|
| 15 | gsumzadd.h |
. . 3
| |
| 16 | 15, 13 | fssd 6057 |
. 2
|
| 17 | gsumzadd.c |
. . 3
| |
| 18 | frn 6053 |
. . . 4
| |
| 19 | 10, 18 | syl 17 |
. . 3
|
| 20 | 4 | cntzidss 17770 |
. . 3
|
| 21 | 17, 19, 20 | syl2anc 693 |
. 2
|
| 22 | frn 6053 |
. . . 4
| |
| 23 | 15, 22 | syl 17 |
. . 3
|
| 24 | 4 | cntzidss 17770 |
. . 3
|
| 25 | 17, 23, 24 | syl2anc 693 |
. 2
|
| 26 | 3 | submcl 17353 |
. . . . . . 7
|
| 27 | 26 | 3expb 1266 |
. . . . . 6
|
| 28 | 11, 27 | sylan 488 |
. . . . 5
|
| 29 | inidm 3822 |
. . . . 5
| |
| 30 | 28, 10, 15, 6, 6, 29 | off 6912 |
. . . 4
|
| 31 | frn 6053 |
. . . 4
| |
| 32 | 30, 31 | syl 17 |
. . 3
|
| 33 | 4 | cntzidss 17770 |
. . 3
|
| 34 | 17, 32, 33 | syl2anc 693 |
. 2
|
| 35 | 17 | adantr 481 |
. . . 4
|
| 36 | 13 | adantr 481 |
. . . . 5
|
| 37 | 5 | adantr 481 |
. . . . . . 7
|
| 38 | vex 3203 |
. . . . . . . 8
| |
| 39 | 38 | a1i 11 |
. . . . . . 7
|
| 40 | 11 | adantr 481 |
. . . . . . 7
|
| 41 | simpl 473 |
. . . . . . . 8
| |
| 42 | fssres 6070 |
. . . . . . . 8
| |
| 43 | 15, 41, 42 | syl2an 494 |
. . . . . . 7
|
| 44 | 25 | adantr 481 |
. . . . . . . 8
|
| 45 | resss 5422 |
. . . . . . . . 9
| |
| 46 | rnss 5354 |
. . . . . . . . 9
| |
| 47 | 45, 46 | ax-mp 5 |
. . . . . . . 8
|
| 48 | 4 | cntzidss 17770 |
. . . . . . . 8
|
| 49 | 44, 47, 48 | sylancl 694 |
. . . . . . 7
|
| 50 | ffun 6048 |
. . . . . . . . . . 11
| |
| 51 | 15, 50 | syl 17 |
. . . . . . . . . 10
|
| 52 | funres 5929 |
. . . . . . . . . 10
| |
| 53 | 51, 52 | syl 17 |
. . . . . . . . 9
|
| 54 | 53 | adantr 481 |
. . . . . . . 8
|
| 55 | 8 | fsuppimpd 8282 |
. . . . . . . . . 10
|
| 56 | 55 | adantr 481 |
. . . . . . . . 9
|
| 57 | fex 6490 |
. . . . . . . . . . . 12
| |
| 58 | 15, 6, 57 | syl2anc 693 |
. . . . . . . . . . 11
|
| 59 | fvex 6201 |
. . . . . . . . . . . 12
| |
| 60 | 2, 59 | eqeltri 2697 |
. . . . . . . . . . 11
|
| 61 | ressuppss 7314 |
. . . . . . . . . . 11
| |
| 62 | 58, 60, 61 | sylancl 694 |
. . . . . . . . . 10
|
| 63 | 62 | adantr 481 |
. . . . . . . . 9
|
| 64 | ssfi 8180 |
. . . . . . . . 9
| |
| 65 | 56, 63, 64 | syl2anc 693 |
. . . . . . . 8
|
| 66 | resfunexg 6479 |
. . . . . . . . . . 11
| |
| 67 | 51, 38, 66 | sylancl 694 |
. . . . . . . . . 10
|
| 68 | isfsupp 8279 |
. . . . . . . . . 10
| |
| 69 | 67, 60, 68 | sylancl 694 |
. . . . . . . . 9
|
| 70 | 69 | adantr 481 |
. . . . . . . 8
|
| 71 | 54, 65, 70 | mpbir2and 957 |
. . . . . . 7
|
| 72 | 2, 4, 37, 39, 40, 43, 49, 71 | gsumzsubmcl 18318 |
. . . . . 6
|
| 73 | 72 | snssd 4340 |
. . . . 5
|
| 74 | 1, 4 | cntz2ss 17765 |
. . . . 5
|
| 75 | 36, 73, 74 | syl2anc 693 |
. . . 4
|
| 76 | 35, 75 | sstrd 3613 |
. . 3
|
| 77 | eldifi 3732 |
. . . . 5
| |
| 78 | 77 | adantl 482 |
. . . 4
|
| 79 | ffvelrn 6357 |
. . . 4
| |
| 80 | 10, 78, 79 | syl2an 494 |
. . 3
|
| 81 | 76, 80 | sseldd 3604 |
. 2
|
| 82 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 16, 21, 25, 34, 81 | gsumzaddlem 18321 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-0g 16102 df-gsum 16103 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-cntz 17750 |
| This theorem is referenced by: gsumadd 18323 gsumzsplit 18327 |
| Copyright terms: Public domain | W3C validator |