MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzadd Structured version   Visualization version   Unicode version

Theorem gsumzadd 18322
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumzadd.b  |-  B  =  ( Base `  G
)
gsumzadd.0  |-  .0.  =  ( 0g `  G )
gsumzadd.p  |-  .+  =  ( +g  `  G )
gsumzadd.z  |-  Z  =  (Cntz `  G )
gsumzadd.g  |-  ( ph  ->  G  e.  Mnd )
gsumzadd.a  |-  ( ph  ->  A  e.  V )
gsumzadd.fn  |-  ( ph  ->  F finSupp  .0.  )
gsumzadd.hn  |-  ( ph  ->  H finSupp  .0.  )
gsumzadd.s  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
gsumzadd.c  |-  ( ph  ->  S  C_  ( Z `  S ) )
gsumzadd.f  |-  ( ph  ->  F : A --> S )
gsumzadd.h  |-  ( ph  ->  H : A --> S )
Assertion
Ref Expression
gsumzadd  |-  ( ph  ->  ( G  gsumg  ( F  oF  .+  H ) )  =  ( ( G 
gsumg  F )  .+  ( G  gsumg  H ) ) )

Proof of Theorem gsumzadd
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzadd.b . 2  |-  B  =  ( Base `  G
)
2 gsumzadd.0 . 2  |-  .0.  =  ( 0g `  G )
3 gsumzadd.p . 2  |-  .+  =  ( +g  `  G )
4 gsumzadd.z . 2  |-  Z  =  (Cntz `  G )
5 gsumzadd.g . 2  |-  ( ph  ->  G  e.  Mnd )
6 gsumzadd.a . 2  |-  ( ph  ->  A  e.  V )
7 gsumzadd.fn . 2  |-  ( ph  ->  F finSupp  .0.  )
8 gsumzadd.hn . 2  |-  ( ph  ->  H finSupp  .0.  )
9 eqid 2622 . 2  |-  ( ( F  u.  H ) supp 
.0.  )  =  ( ( F  u.  H
) supp  .0.  )
10 gsumzadd.f . . 3  |-  ( ph  ->  F : A --> S )
11 gsumzadd.s . . . 4  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
121submss 17350 . . . 4  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  B
)
1311, 12syl 17 . . 3  |-  ( ph  ->  S  C_  B )
1410, 13fssd 6057 . 2  |-  ( ph  ->  F : A --> B )
15 gsumzadd.h . . 3  |-  ( ph  ->  H : A --> S )
1615, 13fssd 6057 . 2  |-  ( ph  ->  H : A --> B )
17 gsumzadd.c . . 3  |-  ( ph  ->  S  C_  ( Z `  S ) )
18 frn 6053 . . . 4  |-  ( F : A --> S  ->  ran  F  C_  S )
1910, 18syl 17 . . 3  |-  ( ph  ->  ran  F  C_  S
)
204cntzidss 17770 . . 3  |-  ( ( S  C_  ( Z `  S )  /\  ran  F 
C_  S )  ->  ran  F  C_  ( Z `  ran  F ) )
2117, 19, 20syl2anc 693 . 2  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
22 frn 6053 . . . 4  |-  ( H : A --> S  ->  ran  H  C_  S )
2315, 22syl 17 . . 3  |-  ( ph  ->  ran  H  C_  S
)
244cntzidss 17770 . . 3  |-  ( ( S  C_  ( Z `  S )  /\  ran  H 
C_  S )  ->  ran  H  C_  ( Z `  ran  H ) )
2517, 23, 24syl2anc 693 . 2  |-  ( ph  ->  ran  H  C_  ( Z `  ran  H ) )
263submcl 17353 . . . . . . 7  |-  ( ( S  e.  (SubMnd `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x  .+  y )  e.  S )
27263expb 1266 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  S
)
2811, 27sylan 488 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
29 inidm 3822 . . . . 5  |-  ( A  i^i  A )  =  A
3028, 10, 15, 6, 6, 29off 6912 . . . 4  |-  ( ph  ->  ( F  oF  .+  H ) : A --> S )
31 frn 6053 . . . 4  |-  ( ( F  oF  .+  H ) : A --> S  ->  ran  ( F  oF  .+  H ) 
C_  S )
3230, 31syl 17 . . 3  |-  ( ph  ->  ran  ( F  oF  .+  H )  C_  S )
334cntzidss 17770 . . 3  |-  ( ( S  C_  ( Z `  S )  /\  ran  ( F  oF  .+  H )  C_  S
)  ->  ran  ( F  oF  .+  H
)  C_  ( Z `  ran  ( F  oF  .+  H ) ) )
3417, 32, 33syl2anc 693 . 2  |-  ( ph  ->  ran  ( F  oF  .+  H )  C_  ( Z `  ran  ( F  oF  .+  H
) ) )
3517adantr 481 . . . 4  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  C_  ( Z `  S ) )
3613adantr 481 . . . . 5  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  C_  B )
375adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  G  e.  Mnd )
38 vex 3203 . . . . . . . 8  |-  x  e. 
_V
3938a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  x  e.  _V )
4011adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  e.  (SubMnd `  G
) )
41 simpl 473 . . . . . . . 8  |-  ( ( x  C_  A  /\  k  e.  ( A  \  x ) )  ->  x  C_  A )
42 fssres 6070 . . . . . . . 8  |-  ( ( H : A --> S  /\  x  C_  A )  -> 
( H  |`  x
) : x --> S )
4315, 41, 42syl2an 494 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( H  |`  x
) : x --> S )
4425adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  ran  H  C_  ( Z `  ran  H ) )
45 resss 5422 . . . . . . . . 9  |-  ( H  |`  x )  C_  H
46 rnss 5354 . . . . . . . . 9  |-  ( ( H  |`  x )  C_  H  ->  ran  ( H  |`  x )  C_  ran  H )
4745, 46ax-mp 5 . . . . . . . 8  |-  ran  ( H  |`  x )  C_  ran  H
484cntzidss 17770 . . . . . . . 8  |-  ( ( ran  H  C_  ( Z `  ran  H )  /\  ran  ( H  |`  x )  C_  ran  H )  ->  ran  ( H  |`  x )  C_  ( Z `  ran  ( H  |`  x ) ) )
4944, 47, 48sylancl 694 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  ran  ( H  |`  x
)  C_  ( Z `  ran  ( H  |`  x ) ) )
50 ffun 6048 . . . . . . . . . . 11  |-  ( H : A --> S  ->  Fun  H )
5115, 50syl 17 . . . . . . . . . 10  |-  ( ph  ->  Fun  H )
52 funres 5929 . . . . . . . . . 10  |-  ( Fun 
H  ->  Fun  ( H  |`  x ) )
5351, 52syl 17 . . . . . . . . 9  |-  ( ph  ->  Fun  ( H  |`  x ) )
5453adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  Fun  ( H  |`  x
) )
558fsuppimpd 8282 . . . . . . . . . 10  |-  ( ph  ->  ( H supp  .0.  )  e.  Fin )
5655adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( H supp  .0.  )  e.  Fin )
57 fex 6490 . . . . . . . . . . . 12  |-  ( ( H : A --> S  /\  A  e.  V )  ->  H  e.  _V )
5815, 6, 57syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  H  e.  _V )
59 fvex 6201 . . . . . . . . . . . 12  |-  ( 0g
`  G )  e. 
_V
602, 59eqeltri 2697 . . . . . . . . . . 11  |-  .0.  e.  _V
61 ressuppss 7314 . . . . . . . . . . 11  |-  ( ( H  e.  _V  /\  .0.  e.  _V )  -> 
( ( H  |`  x ) supp  .0.  )  C_  ( H supp  .0.  )
)
6258, 60, 61sylancl 694 . . . . . . . . . 10  |-  ( ph  ->  ( ( H  |`  x ) supp  .0.  )  C_  ( H supp  .0.  )
)
6362adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( ( H  |`  x ) supp  .0.  )  C_  ( H supp  .0.  )
)
64 ssfi 8180 . . . . . . . . 9  |-  ( ( ( H supp  .0.  )  e.  Fin  /\  ( ( H  |`  x ) supp  .0.  )  C_  ( H supp 
.0.  ) )  -> 
( ( H  |`  x ) supp  .0.  )  e.  Fin )
6556, 63, 64syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( ( H  |`  x ) supp  .0.  )  e.  Fin )
66 resfunexg 6479 . . . . . . . . . . 11  |-  ( ( Fun  H  /\  x  e.  _V )  ->  ( H  |`  x )  e. 
_V )
6751, 38, 66sylancl 694 . . . . . . . . . 10  |-  ( ph  ->  ( H  |`  x
)  e.  _V )
68 isfsupp 8279 . . . . . . . . . 10  |-  ( ( ( H  |`  x
)  e.  _V  /\  .0.  e.  _V )  -> 
( ( H  |`  x ) finSupp  .0.  <->  ( Fun  ( H  |`  x )  /\  ( ( H  |`  x ) supp  .0.  )  e.  Fin ) ) )
6967, 60, 68sylancl 694 . . . . . . . . 9  |-  ( ph  ->  ( ( H  |`  x ) finSupp  .0.  <->  ( Fun  ( H  |`  x )  /\  ( ( H  |`  x ) supp  .0.  )  e.  Fin ) ) )
7069adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( ( H  |`  x ) finSupp  .0.  <->  ( Fun  ( H  |`  x )  /\  ( ( H  |`  x ) supp  .0.  )  e.  Fin ) ) )
7154, 65, 70mpbir2and 957 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( H  |`  x
) finSupp  .0.  )
722, 4, 37, 39, 40, 43, 49, 71gsumzsubmcl 18318 . . . . . 6  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( G  gsumg  ( H  |`  x
) )  e.  S
)
7372snssd 4340 . . . . 5  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  { ( G  gsumg  ( H  |`  x ) ) } 
C_  S )
741, 4cntz2ss 17765 . . . . 5  |-  ( ( S  C_  B  /\  { ( G  gsumg  ( H  |`  x
) ) }  C_  S )  ->  ( Z `  S )  C_  ( Z `  {
( G  gsumg  ( H  |`  x
) ) } ) )
7536, 73, 74syl2anc 693 . . . 4  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( Z `  S
)  C_  ( Z `  { ( G  gsumg  ( H  |`  x ) ) } ) )
7635, 75sstrd 3613 . . 3  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  C_  ( Z `  { ( G  gsumg  ( H  |`  x ) ) } ) )
77 eldifi 3732 . . . . 5  |-  ( k  e.  ( A  \  x )  ->  k  e.  A )
7877adantl 482 . . . 4  |-  ( ( x  C_  A  /\  k  e.  ( A  \  x ) )  -> 
k  e.  A )
79 ffvelrn 6357 . . . 4  |-  ( ( F : A --> S  /\  k  e.  A )  ->  ( F `  k
)  e.  S )
8010, 78, 79syl2an 494 . . 3  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( F `  k
)  e.  S )
8176, 80sseldd 3604 . 2  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( F `  k
)  e.  ( Z `
 { ( G 
gsumg  ( H  |`  x ) ) } ) )
821, 2, 3, 4, 5, 6, 7, 8, 9, 14, 16, 21, 25, 34, 81gsumzaddlem 18321 1  |-  ( ph  ->  ( G  gsumg  ( F  oF  .+  H ) )  =  ( ( G 
gsumg  F )  .+  ( G  gsumg  H ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   {csn 4177   class class class wbr 4653   ran crn 5115    |` cres 5116   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  SubMndcsubmnd 17334  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-cntz 17750
This theorem is referenced by:  gsumadd  18323  gsumzsplit  18327
  Copyright terms: Public domain W3C validator