MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppres Structured version   Visualization version   Unicode version

Theorem fsuppres 8300
Description: The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
fsuppres.s  |-  ( ph  ->  F finSupp  Z )
fsuppres.z  |-  ( ph  ->  Z  e.  V )
Assertion
Ref Expression
fsuppres  |-  ( ph  ->  ( F  |`  X ) finSupp  Z )

Proof of Theorem fsuppres
StepHypRef Expression
1 fsuppres.s . . 3  |-  ( ph  ->  F finSupp  Z )
2 fsuppimp 8281 . . . 4  |-  ( F finSupp  Z  ->  ( Fun  F  /\  ( F supp  Z )  e.  Fin ) )
3 relprcnfsupp 8278 . . . . . . . . . . . 12  |-  ( -.  F  e.  _V  ->  -.  F finSupp  Z )
43con4i 113 . . . . . . . . . . 11  |-  ( F finSupp  Z  ->  F  e.  _V )
51, 4syl 17 . . . . . . . . . 10  |-  ( ph  ->  F  e.  _V )
6 fsuppres.z . . . . . . . . . 10  |-  ( ph  ->  Z  e.  V )
75, 6jca 554 . . . . . . . . 9  |-  ( ph  ->  ( F  e.  _V  /\  Z  e.  V ) )
87adantr 481 . . . . . . . 8  |-  ( (
ph  /\  Fun  F )  ->  ( F  e. 
_V  /\  Z  e.  V ) )
9 ressuppss 7314 . . . . . . . 8  |-  ( ( F  e.  _V  /\  Z  e.  V )  ->  ( ( F  |`  X ) supp  Z )  C_  ( F supp  Z ) )
10 ssfi 8180 . . . . . . . . 9  |-  ( ( ( F supp  Z )  e.  Fin  /\  (
( F  |`  X ) supp 
Z )  C_  ( F supp  Z ) )  -> 
( ( F  |`  X ) supp  Z )  e.  Fin )
1110expcom 451 . . . . . . . 8  |-  ( ( ( F  |`  X ) supp 
Z )  C_  ( F supp  Z )  ->  (
( F supp  Z )  e.  Fin  ->  ( ( F  |`  X ) supp  Z
)  e.  Fin )
)
128, 9, 113syl 18 . . . . . . 7  |-  ( (
ph  /\  Fun  F )  ->  ( ( F supp 
Z )  e.  Fin  ->  ( ( F  |`  X ) supp  Z )  e.  Fin ) )
1312expcom 451 . . . . . 6  |-  ( Fun 
F  ->  ( ph  ->  ( ( F supp  Z
)  e.  Fin  ->  ( ( F  |`  X ) supp 
Z )  e.  Fin ) ) )
1413com23 86 . . . . 5  |-  ( Fun 
F  ->  ( ( F supp  Z )  e.  Fin  ->  ( ph  ->  (
( F  |`  X ) supp 
Z )  e.  Fin ) ) )
1514imp 445 . . . 4  |-  ( ( Fun  F  /\  ( F supp  Z )  e.  Fin )  ->  ( ph  ->  ( ( F  |`  X ) supp 
Z )  e.  Fin ) )
162, 15syl 17 . . 3  |-  ( F finSupp  Z  ->  ( ph  ->  ( ( F  |`  X ) supp 
Z )  e.  Fin ) )
171, 16mpcom 38 . 2  |-  ( ph  ->  ( ( F  |`  X ) supp  Z )  e.  Fin )
18 funres 5929 . . . . 5  |-  ( Fun 
F  ->  Fun  ( F  |`  X ) )
1918adantr 481 . . . 4  |-  ( ( Fun  F  /\  ( F supp  Z )  e.  Fin )  ->  Fun  ( F  |`  X ) )
201, 2, 193syl 18 . . 3  |-  ( ph  ->  Fun  ( F  |`  X ) )
21 resexg 5442 . . . 4  |-  ( F  e.  _V  ->  ( F  |`  X )  e. 
_V )
221, 4, 213syl 18 . . 3  |-  ( ph  ->  ( F  |`  X )  e.  _V )
23 funisfsupp 8280 . . 3  |-  ( ( Fun  ( F  |`  X )  /\  ( F  |`  X )  e. 
_V  /\  Z  e.  V )  ->  (
( F  |`  X ) finSupp  Z 
<->  ( ( F  |`  X ) supp  Z )  e.  Fin ) )
2420, 22, 6, 23syl3anc 1326 . 2  |-  ( ph  ->  ( ( F  |`  X ) finSupp  Z  <->  ( ( F  |`  X ) supp  Z
)  e.  Fin )
)
2517, 24mpbird 247 1  |-  ( ph  ->  ( F  |`  X ) finSupp  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |` cres 5116   Fun wfun 5882  (class class class)co 6650   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-supp 7296  df-er 7742  df-en 7956  df-fin 7959  df-fsupp 8276
This theorem is referenced by:  dprdfadd  18419  frlmsplit2  20112  gsumle  29779  lindslinindimp2lem3  42249  lindslinindsimp2lem5  42251
  Copyright terms: Public domain W3C validator