Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgn3da Structured version   Visualization version   Unicode version

Theorem sgn3da 30603
Description: A conditional containing a signum is true if it is true in all three possible cases. (Contributed by Thierry Arnoux, 1-Oct-2018.)
Hypotheses
Ref Expression
sgn3da.0  |-  ( ph  ->  A  e.  RR* )
sgn3da.1  |-  ( (sgn
`  A )  =  0  ->  ( ps  <->  ch ) )
sgn3da.2  |-  ( (sgn
`  A )  =  1  ->  ( ps  <->  th ) )
sgn3da.3  |-  ( (sgn
`  A )  = 
-u 1  ->  ( ps 
<->  ta ) )
sgn3da.4  |-  ( (
ph  /\  A  = 
0 )  ->  ch )
sgn3da.5  |-  ( (
ph  /\  0  <  A )  ->  th )
sgn3da.6  |-  ( (
ph  /\  A  <  0 )  ->  ta )
Assertion
Ref Expression
sgn3da  |-  ( ph  ->  ps )

Proof of Theorem sgn3da
StepHypRef Expression
1 sgn3da.0 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR* )
2 sgnval 13828 . . . . . . . . 9  |-  ( A  e.  RR*  ->  (sgn `  A )  =  if ( A  =  0 ,  0 ,  if ( A  <  0 ,  -u 1 ,  1 ) ) )
31, 2syl 17 . . . . . . . 8  |-  ( ph  ->  (sgn `  A )  =  if ( A  =  0 ,  0 ,  if ( A  <  0 ,  -u 1 ,  1 ) ) )
43eqeq2d 2632 . . . . . . 7  |-  ( ph  ->  ( 0  =  (sgn
`  A )  <->  0  =  if ( A  =  0 ,  0 ,  if ( A  <  0 ,  -u 1 ,  1 ) ) ) )
54pm5.32i 669 . . . . . 6  |-  ( (
ph  /\  0  =  (sgn `  A ) )  <-> 
( ph  /\  0  =  if ( A  =  0 ,  0 ,  if ( A  <  0 ,  -u 1 ,  1 ) ) ) )
6 sgn3da.1 . . . . . . . . 9  |-  ( (sgn
`  A )  =  0  ->  ( ps  <->  ch ) )
76eqcoms 2630 . . . . . . . 8  |-  ( 0  =  (sgn `  A
)  ->  ( ps  <->  ch ) )
87bicomd 213 . . . . . . 7  |-  ( 0  =  (sgn `  A
)  ->  ( ch  <->  ps ) )
98adantl 482 . . . . . 6  |-  ( (
ph  /\  0  =  (sgn `  A ) )  ->  ( ch  <->  ps )
)
105, 9sylbir 225 . . . . 5  |-  ( (
ph  /\  0  =  if ( A  =  0 ,  0 ,  if ( A  <  0 ,  -u 1 ,  1 ) ) )  -> 
( ch  <->  ps )
)
1110expcom 451 . . . 4  |-  ( 0  =  if ( A  =  0 ,  0 ,  if ( A  <  0 ,  -u
1 ,  1 ) )  ->  ( ph  ->  ( ch  <->  ps )
) )
1211pm5.74d 262 . . 3  |-  ( 0  =  if ( A  =  0 ,  0 ,  if ( A  <  0 ,  -u
1 ,  1 ) )  ->  ( ( ph  ->  ch )  <->  ( ph  ->  ps ) ) )
133eqeq2d 2632 . . . . . . 7  |-  ( ph  ->  ( if ( A  <  0 ,  -u
1 ,  1 )  =  (sgn `  A
)  <->  if ( A  <  0 ,  -u 1 ,  1 )  =  if ( A  =  0 ,  0 ,  if ( A  <  0 ,  -u 1 ,  1 ) ) ) )
1413pm5.32i 669 . . . . . 6  |-  ( (
ph  /\  if ( A  <  0 ,  -u
1 ,  1 )  =  (sgn `  A
) )  <->  ( ph  /\  if ( A  <  0 ,  -u 1 ,  1 )  =  if ( A  =  0 ,  0 ,  if ( A  <  0 ,  -u 1 ,  1 ) ) ) )
15 eqeq1 2626 . . . . . . . . 9  |-  ( -u
1  =  if ( A  <  0 , 
-u 1 ,  1 )  ->  ( -u 1  =  (sgn `  A )  <->  if ( A  <  0 ,  -u 1 ,  1 )  =  (sgn `  A ) ) )
1615imbi1d 331 . . . . . . . 8  |-  ( -u
1  =  if ( A  <  0 , 
-u 1 ,  1 )  ->  ( ( -u 1  =  (sgn `  A )  ->  (
( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th )
)  <->  ps ) )  <->  ( if ( A  <  0 ,  -u 1 ,  1 )  =  (sgn `  A )  ->  (
( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th )
)  <->  ps ) ) ) )
17 eqeq1 2626 . . . . . . . . 9  |-  ( 1  =  if ( A  <  0 ,  -u
1 ,  1 )  ->  ( 1  =  (sgn `  A )  <->  if ( A  <  0 ,  -u 1 ,  1 )  =  (sgn `  A ) ) )
1817imbi1d 331 . . . . . . . 8  |-  ( 1  =  if ( A  <  0 ,  -u
1 ,  1 )  ->  ( ( 1  =  (sgn `  A
)  ->  ( (
( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th ) )  <->  ps )
)  <->  ( if ( A  <  0 , 
-u 1 ,  1 )  =  (sgn `  A )  ->  (
( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th )
)  <->  ps ) ) ) )
19 sgn3da.6 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A  <  0 )  ->  ta )
2019adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  <  0 )  /\  ( A  <  0  ->  ta ) )  ->  ta )
21 simp2 1062 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  <  0 )  /\  ta  /\  A  <  0 )  ->  ta )
22213expia 1267 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  <  0 )  /\  ta )  ->  ( A  <  0  ->  ta )
)
2320, 22impbida 877 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  <  0  ->  ta )  <->  ta )
)
24 pm3.24 926 . . . . . . . . . . . . . . . . 17  |-  -.  ( A  <  0  /\  -.  A  <  0 )
2524pm2.21i 116 . . . . . . . . . . . . . . . 16  |-  ( ( A  <  0  /\ 
-.  A  <  0
)  ->  th )
2625adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( A  <  0  /\  -.  A  <  0 ) )  ->  th )
2726expr 643 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  <  0 )  ->  ( -.  A  <  0  ->  th ) )
28 tbtru 1494 . . . . . . . . . . . . . 14  |-  ( ( -.  A  <  0  ->  th )  <->  ( ( -.  A  <  0  ->  th )  <-> T.  )
)
2927, 28sylib 208 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  <  0 )  ->  (
( -.  A  <  0  ->  th )  <-> T.  ) )
3023, 29anbi12d 747 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th )
)  <->  ( ta  /\ T.  ) ) )
31 ancom 466 . . . . . . . . . . . . 13  |-  ( ( ta  /\ T.  )  <-> 
( T.  /\  ta ) )
32 truan 1501 . . . . . . . . . . . . 13  |-  ( ( T.  /\  ta )  <->  ta )
3331, 32bitri 264 . . . . . . . . . . . 12  |-  ( ( ta  /\ T.  )  <->  ta )
3430, 33syl6bb 276 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th )
)  <->  ta ) )
35343adant3 1081 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0  /\  -u 1  =  (sgn
`  A ) )  ->  ( ( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th ) )  <->  ta )
)
36 sgn3da.3 . . . . . . . . . . . 12  |-  ( (sgn
`  A )  = 
-u 1  ->  ( ps 
<->  ta ) )
3736eqcoms 2630 . . . . . . . . . . 11  |-  ( -u
1  =  (sgn `  A )  ->  ( ps 
<->  ta ) )
38373ad2ant3 1084 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0  /\  -u 1  =  (sgn
`  A ) )  ->  ( ps  <->  ta )
)
3935, 38bitr4d 271 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0  /\  -u 1  =  (sgn
`  A ) )  ->  ( ( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th ) )  <->  ps )
)
40393expia 1267 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  ( -u 1  =  (sgn `  A )  ->  (
( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th )
)  <->  ps ) ) )
41193adant2 1080 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  A  <  0  /\  A  <  0 )  ->  ta )
42413expia 1267 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  A  <  0 )  ->  ( A  <  0  ->  ta ) )
43 tbtru 1494 . . . . . . . . . . . . . 14  |-  ( ( A  <  0  ->  ta )  <->  ( ( A  <  0  ->  ta ) 
<-> T.  ) )
4442, 43sylib 208 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  A  <  0 )  ->  (
( A  <  0  ->  ta )  <-> T.  )
)
45 pm3.35 611 . . . . . . . . . . . . . . 15  |-  ( ( -.  A  <  0  /\  ( -.  A  <  0  ->  th )
)  ->  th )
4645adantll 750 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  A  <  0 )  /\  ( -.  A  <  0  ->  th ) )  ->  th )
47 simp2 1062 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  A  <  0 )  /\  th 
/\  -.  A  <  0 )  ->  th )
48473expia 1267 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  A  <  0 )  /\  th )  ->  ( -.  A  <  0  ->  th )
)
4946, 48impbida 877 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  A  <  0 )  ->  (
( -.  A  <  0  ->  th )  <->  th ) )
5044, 49anbi12d 747 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  A  <  0 )  ->  (
( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th )
)  <->  ( T.  /\  th ) ) )
51 truan 1501 . . . . . . . . . . . 12  |-  ( ( T.  /\  th )  <->  th )
5250, 51syl6bb 276 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  A  <  0 )  ->  (
( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th )
)  <->  th ) )
53523adant3 1081 . . . . . . . . . 10  |-  ( (
ph  /\  -.  A  <  0  /\  1  =  (sgn `  A )
)  ->  ( (
( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th ) )  <->  th )
)
54 sgn3da.2 . . . . . . . . . . . 12  |-  ( (sgn
`  A )  =  1  ->  ( ps  <->  th ) )
5554eqcoms 2630 . . . . . . . . . . 11  |-  ( 1  =  (sgn `  A
)  ->  ( ps  <->  th ) )
56553ad2ant3 1084 . . . . . . . . . 10  |-  ( (
ph  /\  -.  A  <  0  /\  1  =  (sgn `  A )
)  ->  ( ps  <->  th ) )
5753, 56bitr4d 271 . . . . . . . . 9  |-  ( (
ph  /\  -.  A  <  0  /\  1  =  (sgn `  A )
)  ->  ( (
( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th ) )  <->  ps )
)
58573expia 1267 . . . . . . . 8  |-  ( (
ph  /\  -.  A  <  0 )  ->  (
1  =  (sgn `  A )  ->  (
( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th )
)  <->  ps ) ) )
5916, 18, 40, 58ifbothda 4123 . . . . . . 7  |-  ( ph  ->  ( if ( A  <  0 ,  -u
1 ,  1 )  =  (sgn `  A
)  ->  ( (
( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th ) )  <->  ps )
) )
6059imp 445 . . . . . 6  |-  ( (
ph  /\  if ( A  <  0 ,  -u
1 ,  1 )  =  (sgn `  A
) )  ->  (
( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th )
)  <->  ps ) )
6114, 60sylbir 225 . . . . 5  |-  ( (
ph  /\  if ( A  <  0 ,  -u
1 ,  1 )  =  if ( A  =  0 ,  0 ,  if ( A  <  0 ,  -u
1 ,  1 ) ) )  ->  (
( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th )
)  <->  ps ) )
6261expcom 451 . . . 4  |-  ( if ( A  <  0 ,  -u 1 ,  1 )  =  if ( A  =  0 ,  0 ,  if ( A  <  0 , 
-u 1 ,  1 ) )  ->  ( ph  ->  ( ( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th ) )  <->  ps )
) )
6362pm5.74d 262 . . 3  |-  ( if ( A  <  0 ,  -u 1 ,  1 )  =  if ( A  =  0 ,  0 ,  if ( A  <  0 , 
-u 1 ,  1 ) )  ->  (
( ph  ->  ( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th ) ) )  <-> 
( ph  ->  ps )
) )
64 sgn3da.4 . . . . 5  |-  ( (
ph  /\  A  = 
0 )  ->  ch )
6564expcom 451 . . . 4  |-  ( A  =  0  ->  ( ph  ->  ch ) )
6665adantl 482 . . 3  |-  ( ( T.  /\  A  =  0 )  ->  ( ph  ->  ch ) )
6719ex 450 . . . . . . 7  |-  ( ph  ->  ( A  <  0  ->  ta ) )
6867adantr 481 . . . . . 6  |-  ( (
ph  /\  -.  A  =  0 )  -> 
( A  <  0  ->  ta ) )
69 simp1 1061 . . . . . . . 8  |-  ( (
ph  /\  -.  A  =  0  /\  -.  A  <  0 )  ->  ph )
70 df-ne 2795 . . . . . . . . . . . 12  |-  ( A  =/=  0  <->  -.  A  =  0 )
71 0xr 10086 . . . . . . . . . . . . 13  |-  0  e.  RR*
72 xrlttri2 11975 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR*  /\  0  e.  RR* )  ->  ( A  =/=  0  <->  ( A  <  0  \/  0  < 
A ) ) )
731, 71, 72sylancl 694 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  =/=  0  <->  ( A  <  0  \/  0  <  A ) ) )
7470, 73syl5bbr 274 . . . . . . . . . . 11  |-  ( ph  ->  ( -.  A  =  0  <->  ( A  <  0  \/  0  < 
A ) ) )
7574biimpa 501 . . . . . . . . . 10  |-  ( (
ph  /\  -.  A  =  0 )  -> 
( A  <  0  \/  0  <  A ) )
7675ord 392 . . . . . . . . 9  |-  ( (
ph  /\  -.  A  =  0 )  -> 
( -.  A  <  0  ->  0  <  A ) )
77763impia 1261 . . . . . . . 8  |-  ( (
ph  /\  -.  A  =  0  /\  -.  A  <  0 )  -> 
0  <  A )
78 sgn3da.5 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  th )
7969, 77, 78syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  -.  A  =  0  /\  -.  A  <  0 )  ->  th )
80793expia 1267 . . . . . 6  |-  ( (
ph  /\  -.  A  =  0 )  -> 
( -.  A  <  0  ->  th )
)
8168, 80jca 554 . . . . 5  |-  ( (
ph  /\  -.  A  =  0 )  -> 
( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th )
) )
8281expcom 451 . . . 4  |-  ( -.  A  =  0  -> 
( ph  ->  ( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th ) ) ) )
8382adantl 482 . . 3  |-  ( ( T.  /\  -.  A  =  0 )  -> 
( ph  ->  ( ( A  <  0  ->  ta )  /\  ( -.  A  <  0  ->  th ) ) ) )
8412, 63, 66, 83ifbothda 4123 . 2  |-  ( T. 
->  ( ph  ->  ps ) )
8584trud 1493 1  |-  ( ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   T. wtru 1484    e. wcel 1990    =/= wne 2794   ifcif 4086   class class class wbr 4653   ` cfv 5888   0cc0 9936   1c1 9937   RR*cxr 10073    < clt 10074   -ucneg 10267  sgncsgn 13826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-neg 10269  df-sgn 13827
This theorem is referenced by:  sgnmul  30604  sgnsub  30606  sgnnbi  30607  sgnpbi  30608  sgn0bi  30609  sgnsgn  30610
  Copyright terms: Public domain W3C validator