Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltintdifex Structured version   Visualization version   Unicode version

Theorem sltintdifex 31814
Description: If  A <s B, then the intersection of all the ordinals that have differing signs in  A and  B exists. (Contributed by Scott Fenton, 22-Feb-2012.)
Assertion
Ref Expression
sltintdifex  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V ) )
Distinct variable groups:    A, a    B, a

Proof of Theorem sltintdifex
StepHypRef Expression
1 sltval2 31809 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
2 fvex 6201 . . . 4  |-  ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  e. 
_V
3 fvex 6201 . . . 4  |-  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  e. 
_V
42, 3brtp 31639 . . 3  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  <->  ( ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  \/  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) ) )
5 fvprc 6185 . . . . . . 7  |-  ( -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
6 1n0 7575 . . . . . . . . 9  |-  1o  =/=  (/)
76neii 2796 . . . . . . . 8  |-  -.  1o  =  (/)
8 eqeq1 2626 . . . . . . . . 9  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  <->  (/)  =  1o ) )
9 eqcom 2629 . . . . . . . . 9  |-  ( (/)  =  1o  <->  1o  =  (/) )
108, 9syl6bb 276 . . . . . . . 8  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  <->  1o  =  (/) ) )
117, 10mtbiri 317 . . . . . . 7  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  -.  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o )
125, 11syl 17 . . . . . 6  |-  ( -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V  ->  -.  ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o )
1312con4i 113 . . . . 5  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
1413adantr 481 . . . 4  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
1513adantr 481 . . . 4  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
16 fvprc 6185 . . . . . . 7  |-  ( -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V  ->  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
17 2on0 7569 . . . . . . . . 9  |-  2o  =/=  (/)
1817neii 2796 . . . . . . . 8  |-  -.  2o  =  (/)
19 eqeq1 2626 . . . . . . . . 9  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o  <->  (/)  =  2o ) )
20 eqcom 2629 . . . . . . . . 9  |-  ( (/)  =  2o  <->  2o  =  (/) )
2119, 20syl6bb 276 . . . . . . . 8  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o  <->  2o  =  (/) ) )
2218, 21mtbiri 317 . . . . . . 7  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  -.  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )
2316, 22syl 17 . . . . . 6  |-  ( -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V  ->  -.  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o )
2423con4i 113 . . . . 5  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
2524adantl 482 . . . 4  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
2614, 15, 253jaoi 1391 . . 3  |-  ( ( ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o 
/\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
274, 26sylbi 207 . 2  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
281, 27syl6bi 243 1  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200   (/)c0 3915   {ctp 4181   <.cop 4183   |^|cint 4475   class class class wbr 4653   Oncon0 5723   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793   <scslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fv 5896  df-1o 7560  df-2o 7561  df-slt 31797
This theorem is referenced by:  sltres  31815
  Copyright terms: Public domain W3C validator