MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smogt Structured version   Visualization version   Unicode version

Theorem smogt 7464
Description: A strictly monotone ordinal function is greater than or equal to its argument. Exercise 1 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 23-Nov-2011.) (Revised by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
smogt  |-  ( ( F  Fn  A  /\  Smo  F  /\  C  e.  A )  ->  C  C_  ( F `  C
) )

Proof of Theorem smogt
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6  |-  ( x  =  C  ->  x  =  C )
2 fveq2 6191 . . . . . 6  |-  ( x  =  C  ->  ( F `  x )  =  ( F `  C ) )
31, 2sseq12d 3634 . . . . 5  |-  ( x  =  C  ->  (
x  C_  ( F `  x )  <->  C  C_  ( F `  C )
) )
43imbi2d 330 . . . 4  |-  ( x  =  C  ->  (
( ( F  Fn  A  /\  Smo  F )  ->  x  C_  ( F `  x )
)  <->  ( ( F  Fn  A  /\  Smo  F )  ->  C  C_  ( F `  C )
) ) )
5 smodm2 7452 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  Smo  F )  ->  Ord  A )
653adant3 1081 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  Ord  A )
7 simp3 1063 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  x  e.  A )
8 ordelord 5745 . . . . . . . . 9  |-  ( ( Ord  A  /\  x  e.  A )  ->  Ord  x )
96, 7, 8syl2anc 693 . . . . . . . 8  |-  ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  Ord  x )
10 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
1110elon 5732 . . . . . . . 8  |-  ( x  e.  On  <->  Ord  x )
129, 11sylibr 224 . . . . . . 7  |-  ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  x  e.  On )
13 eleq1 2689 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
14133anbi3d 1405 . . . . . . . . 9  |-  ( x  =  y  ->  (
( F  Fn  A  /\  Smo  F  /\  x  e.  A )  <->  ( F  Fn  A  /\  Smo  F  /\  y  e.  A
) ) )
15 id 22 . . . . . . . . . 10  |-  ( x  =  y  ->  x  =  y )
16 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
1715, 16sseq12d 3634 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  C_  ( F `  x )  <->  y  C_  ( F `  y ) ) )
1814, 17imbi12d 334 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  x  C_  ( F `  x ) )  <->  ( ( F  Fn  A  /\  Smo  F  /\  y  e.  A )  ->  y  C_  ( F `  y
) ) ) )
19 simpl1 1064 . . . . . . . . . . . 12  |-  ( ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  /\  y  e.  x )  ->  F  Fn  A )
20 simpl2 1065 . . . . . . . . . . . 12  |-  ( ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  /\  y  e.  x )  ->  Smo  F )
21 ordtr1 5767 . . . . . . . . . . . . . . 15  |-  ( Ord 
A  ->  ( (
y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
2221expcomd 454 . . . . . . . . . . . . . 14  |-  ( Ord 
A  ->  ( x  e.  A  ->  ( y  e.  x  ->  y  e.  A ) ) )
236, 7, 22sylc 65 . . . . . . . . . . . . 13  |-  ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  (
y  e.  x  -> 
y  e.  A ) )
2423imp 445 . . . . . . . . . . . 12  |-  ( ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  /\  y  e.  x )  ->  y  e.  A )
25 pm2.27 42 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  Smo  F  /\  y  e.  A )  ->  (
( ( F  Fn  A  /\  Smo  F  /\  y  e.  A )  ->  y  C_  ( F `  y ) )  -> 
y  C_  ( F `  y ) ) )
2619, 20, 24, 25syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  /\  y  e.  x )  ->  (
( ( F  Fn  A  /\  Smo  F  /\  y  e.  A )  ->  y  C_  ( F `  y ) )  -> 
y  C_  ( F `  y ) ) )
2726ralimdva 2962 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  ( A. y  e.  x  ( ( F  Fn  A  /\  Smo  F  /\  y  e.  A )  ->  y  C_  ( F `  y ) )  ->  A. y  e.  x  y  C_  ( F `  y ) ) )
2853adant3 1081 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  Fn  A  /\  Smo  F  /\  ( x  e.  A  /\  y  e.  x  /\  y  C_  ( F `  y
) ) )  ->  Ord  A )
29 simp31 1097 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  Fn  A  /\  Smo  F  /\  ( x  e.  A  /\  y  e.  x  /\  y  C_  ( F `  y
) ) )  ->  x  e.  A )
3028, 29, 8syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  Fn  A  /\  Smo  F  /\  ( x  e.  A  /\  y  e.  x  /\  y  C_  ( F `  y
) ) )  ->  Ord  x )
31 simp32 1098 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  Fn  A  /\  Smo  F  /\  ( x  e.  A  /\  y  e.  x  /\  y  C_  ( F `  y
) ) )  -> 
y  e.  x )
32 ordelord 5745 . . . . . . . . . . . . . . . . . 18  |-  ( ( Ord  x  /\  y  e.  x )  ->  Ord  y )
3330, 31, 32syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( F  Fn  A  /\  Smo  F  /\  ( x  e.  A  /\  y  e.  x  /\  y  C_  ( F `  y
) ) )  ->  Ord  y )
34 smofvon2 7453 . . . . . . . . . . . . . . . . . . 19  |-  ( Smo 
F  ->  ( F `  x )  e.  On )
35343ad2ant2 1083 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  Fn  A  /\  Smo  F  /\  ( x  e.  A  /\  y  e.  x  /\  y  C_  ( F `  y
) ) )  -> 
( F `  x
)  e.  On )
36 eloni 5733 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x )  e.  On  ->  Ord  ( F `  x ) )
3735, 36syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( F  Fn  A  /\  Smo  F  /\  ( x  e.  A  /\  y  e.  x  /\  y  C_  ( F `  y
) ) )  ->  Ord  ( F `  x
) )
38 simp33 1099 . . . . . . . . . . . . . . . . 17  |-  ( ( F  Fn  A  /\  Smo  F  /\  ( x  e.  A  /\  y  e.  x  /\  y  C_  ( F `  y
) ) )  -> 
y  C_  ( F `  y ) )
39 smoel2 7460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( x  e.  A  /\  y  e.  x
) )  ->  ( F `  y )  e.  ( F `  x
) )
40393adantr3 1222 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( x  e.  A  /\  y  e.  x  /\  y  C_  ( F `
 y ) ) )  ->  ( F `  y )  e.  ( F `  x ) )
41403impa 1259 . . . . . . . . . . . . . . . . 17  |-  ( ( F  Fn  A  /\  Smo  F  /\  ( x  e.  A  /\  y  e.  x  /\  y  C_  ( F `  y
) ) )  -> 
( F `  y
)  e.  ( F `
 x ) )
42 ordtr2 5768 . . . . . . . . . . . . . . . . . 18  |-  ( ( Ord  y  /\  Ord  ( F `  x ) )  ->  ( (
y  C_  ( F `  y )  /\  ( F `  y )  e.  ( F `  x
) )  ->  y  e.  ( F `  x
) ) )
4342imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Ord  y  /\  Ord  ( F `  x
) )  /\  (
y  C_  ( F `  y )  /\  ( F `  y )  e.  ( F `  x
) ) )  -> 
y  e.  ( F `
 x ) )
4433, 37, 38, 41, 43syl22anc 1327 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  A  /\  Smo  F  /\  ( x  e.  A  /\  y  e.  x  /\  y  C_  ( F `  y
) ) )  -> 
y  e.  ( F `
 x ) )
45443expia 1267 . . . . . . . . . . . . . . 15  |-  ( ( F  Fn  A  /\  Smo  F )  ->  (
( x  e.  A  /\  y  e.  x  /\  y  C_  ( F `
 y ) )  ->  y  e.  ( F `  x ) ) )
46453expd 1284 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  A  /\  Smo  F )  ->  (
x  e.  A  -> 
( y  e.  x  ->  ( y  C_  ( F `  y )  ->  y  e.  ( F `
 x ) ) ) ) )
47463impia 1261 . . . . . . . . . . . . 13  |-  ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  (
y  e.  x  -> 
( y  C_  ( F `  y )  ->  y  e.  ( F `
 x ) ) ) )
4847imp 445 . . . . . . . . . . . 12  |-  ( ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  /\  y  e.  x )  ->  (
y  C_  ( F `  y )  ->  y  e.  ( F `  x
) ) )
4948ralimdva 2962 . . . . . . . . . . 11  |-  ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  ( A. y  e.  x  y  C_  ( F `  y )  ->  A. y  e.  x  y  e.  ( F `  x ) ) )
50 dfss3 3592 . . . . . . . . . . 11  |-  ( x 
C_  ( F `  x )  <->  A. y  e.  x  y  e.  ( F `  x ) )
5149, 50syl6ibr 242 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  ( A. y  e.  x  y  C_  ( F `  y )  ->  x  C_  ( F `  x
) ) )
5227, 51syldc 48 . . . . . . . . 9  |-  ( A. y  e.  x  (
( F  Fn  A  /\  Smo  F  /\  y  e.  A )  ->  y  C_  ( F `  y
) )  ->  (
( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  x  C_  ( F `  x
) ) )
5352a1i 11 . . . . . . . 8  |-  ( x  e.  On  ->  ( A. y  e.  x  ( ( F  Fn  A  /\  Smo  F  /\  y  e.  A )  ->  y  C_  ( F `  y ) )  -> 
( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  x  C_  ( F `  x ) ) ) )
5418, 53tfis2 7056 . . . . . . 7  |-  ( x  e.  On  ->  (
( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  x  C_  ( F `  x
) ) )
5512, 54mpcom 38 . . . . . 6  |-  ( ( F  Fn  A  /\  Smo  F  /\  x  e.  A )  ->  x  C_  ( F `  x
) )
56553expia 1267 . . . . 5  |-  ( ( F  Fn  A  /\  Smo  F )  ->  (
x  e.  A  ->  x  C_  ( F `  x ) ) )
5756com12 32 . . . 4  |-  ( x  e.  A  ->  (
( F  Fn  A  /\  Smo  F )  ->  x  C_  ( F `  x ) ) )
584, 57vtoclga 3272 . . 3  |-  ( C  e.  A  ->  (
( F  Fn  A  /\  Smo  F )  ->  C  C_  ( F `  C ) ) )
5958com12 32 . 2  |-  ( ( F  Fn  A  /\  Smo  F )  ->  ( C  e.  A  ->  C 
C_  ( F `  C ) ) )
60593impia 1261 1  |-  ( ( F  Fn  A  /\  Smo  F  /\  C  e.  A )  ->  C  C_  ( F `  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   Ord word 5722   Oncon0 5723    Fn wfn 5883   ` cfv 5888   Smo wsmo 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-smo 7443
This theorem is referenced by:  smorndom  7465  oismo  8445
  Copyright terms: Public domain W3C validator