MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoword Structured version   Visualization version   Unicode version

Theorem smoword 7463
Description: A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
smoword  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  C_  D  <->  ( F `  C )  C_  ( F `  D )
) )

Proof of Theorem smoword
StepHypRef Expression
1 smoord 7462 . . . 4  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( D  e.  A  /\  C  e.  A
) )  ->  ( D  e.  C  <->  ( F `  D )  e.  ( F `  C ) ) )
21notbid 308 . . 3  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( D  e.  A  /\  C  e.  A
) )  ->  ( -.  D  e.  C  <->  -.  ( F `  D
)  e.  ( F `
 C ) ) )
32ancom2s 844 . 2  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( -.  D  e.  C  <->  -.  ( F `  D
)  e.  ( F `
 C ) ) )
4 smodm2 7452 . . . . 5  |-  ( ( F  Fn  A  /\  Smo  F )  ->  Ord  A )
54adantr 481 . . . 4  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  Ord  A )
6 simprl 794 . . . 4  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  C  e.  A )
7 ordelord 5745 . . . 4  |-  ( ( Ord  A  /\  C  e.  A )  ->  Ord  C )
85, 6, 7syl2anc 693 . . 3  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  Ord  C )
9 simprr 796 . . . 4  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  D  e.  A )
10 ordelord 5745 . . . 4  |-  ( ( Ord  A  /\  D  e.  A )  ->  Ord  D )
115, 9, 10syl2anc 693 . . 3  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  Ord  D )
12 ordtri1 5756 . . 3  |-  ( ( Ord  C  /\  Ord  D )  ->  ( C  C_  D  <->  -.  D  e.  C ) )
138, 11, 12syl2anc 693 . 2  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  C_  D  <->  -.  D  e.  C ) )
14 simplr 792 . . . 4  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  Smo  F )
15 smofvon2 7453 . . . 4  |-  ( Smo 
F  ->  ( F `  C )  e.  On )
16 eloni 5733 . . . 4  |-  ( ( F `  C )  e.  On  ->  Ord  ( F `  C ) )
1714, 15, 163syl 18 . . 3  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  Ord  ( F `  C ) )
18 smofvon2 7453 . . . 4  |-  ( Smo 
F  ->  ( F `  D )  e.  On )
19 eloni 5733 . . . 4  |-  ( ( F `  D )  e.  On  ->  Ord  ( F `  D ) )
2014, 18, 193syl 18 . . 3  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  Ord  ( F `  D ) )
21 ordtri1 5756 . . 3  |-  ( ( Ord  ( F `  C )  /\  Ord  ( F `  D ) )  ->  ( ( F `  C )  C_  ( F `  D
)  <->  -.  ( F `  D )  e.  ( F `  C ) ) )
2217, 20, 21syl2anc 693 . 2  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  C_  ( F `  D )  <->  -.  ( F `  D )  e.  ( F `  C
) ) )
233, 13, 223bitr4d 300 1  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  C_  D  <->  ( F `  C )  C_  ( F `  D )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    C_ wss 3574   Ord word 5722   Oncon0 5723    Fn wfn 5883   ` cfv 5888   Smo wsmo 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-smo 7443
This theorem is referenced by:  cfcoflem  9094  coftr  9095
  Copyright terms: Public domain W3C validator