MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oismo Structured version   Visualization version   Unicode version

Theorem oismo 8445
Description: When  A is a subclass of  On,  F is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of  A). The proof avoids ax-rep 4771 (the second statement is trivial under ax-rep 4771). (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
oismo.1  |-  F  = OrdIso
(  _E  ,  A
)
Assertion
Ref Expression
oismo  |-  ( A 
C_  On  ->  ( Smo 
F  /\  ran  F  =  A ) )

Proof of Theorem oismo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epweon 6983 . . . . . 6  |-  _E  We  On
2 wess 5101 . . . . . 6  |-  ( A 
C_  On  ->  (  _E  We  On  ->  _E  We  A ) )
31, 2mpi 20 . . . . 5  |-  ( A 
C_  On  ->  _E  We  A )
4 epse 5097 . . . . 5  |-  _E Se  A
5 oismo.1 . . . . . 6  |-  F  = OrdIso
(  _E  ,  A
)
65oiiso2 8436 . . . . 5  |-  ( (  _E  We  A  /\  _E Se  A )  ->  F  Isom  _E  ,  _E  ( dom  F ,  ran  F
) )
73, 4, 6sylancl 694 . . . 4  |-  ( A 
C_  On  ->  F  Isom  _E  ,  _E  ( dom 
F ,  ran  F
) )
85oicl 8434 . . . . 5  |-  Ord  dom  F
95oif 8435 . . . . . . 7  |-  F : dom  F --> A
10 frn 6053 . . . . . . 7  |-  ( F : dom  F --> A  ->  ran  F  C_  A )
119, 10ax-mp 5 . . . . . 6  |-  ran  F  C_  A
12 id 22 . . . . . 6  |-  ( A 
C_  On  ->  A  C_  On )
1311, 12syl5ss 3614 . . . . 5  |-  ( A 
C_  On  ->  ran  F  C_  On )
14 smoiso2 7466 . . . . 5  |-  ( ( Ord  dom  F  /\  ran  F  C_  On )  ->  ( ( F : dom  F -onto-> ran  F  /\  Smo  F )  <->  F  Isom  _E  ,  _E  ( dom  F ,  ran  F ) ) )
158, 13, 14sylancr 695 . . . 4  |-  ( A 
C_  On  ->  ( ( F : dom  F -onto-> ran  F  /\  Smo  F
)  <->  F  Isom  _E  ,  _E  ( dom  F ,  ran  F ) ) )
167, 15mpbird 247 . . 3  |-  ( A 
C_  On  ->  ( F : dom  F -onto-> ran  F  /\  Smo  F ) )
1716simprd 479 . 2  |-  ( A 
C_  On  ->  Smo  F
)
1811a1i 11 . . 3  |-  ( A 
C_  On  ->  ran  F  C_  A )
19 simprl 794 . . . . . . . 8  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  x  e.  A )
203adantr 481 . . . . . . . . . 10  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  _E  We  A )
214a1i 11 . . . . . . . . . 10  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  _E Se  A )
22 ffn 6045 . . . . . . . . . . . . 13  |-  ( F : dom  F --> A  ->  F  Fn  dom  F )
239, 22mp1i 13 . . . . . . . . . . . 12  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  F  Fn  dom  F )
24 simplrr 801 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  -.  x  e.  ran  F )
253ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  _E  We  A )
264a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  _E Se  A )
27 simplrl 800 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  x  e.  A )
28 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
y  e.  dom  F
)
295oiiniseg 8438 . . . . . . . . . . . . . . . . 17  |-  ( ( (  _E  We  A  /\  _E Se  A )  /\  ( x  e.  A  /\  y  e.  dom  F ) )  ->  (
( F `  y
)  _E  x  \/  x  e.  ran  F
) )
3025, 26, 27, 28, 29syl22anc 1327 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
( ( F `  y )  _E  x  \/  x  e.  ran  F ) )
3130ord 392 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
( -.  ( F `
 y )  _E  x  ->  x  e.  ran  F ) )
3224, 31mt3d 140 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
( F `  y
)  _E  x )
33 vex 3203 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
3433epelc 5031 . . . . . . . . . . . . . 14  |-  ( ( F `  y )  _E  x  <->  ( F `  y )  e.  x
)
3532, 34sylib 208 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
( F `  y
)  e.  x )
3635ralrimiva 2966 . . . . . . . . . . . 12  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  A. y  e.  dom  F ( F `
 y )  e.  x )
37 ffnfv 6388 . . . . . . . . . . . 12  |-  ( F : dom  F --> x  <->  ( F  Fn  dom  F  /\  A. y  e.  dom  F ( F `  y )  e.  x ) )
3823, 36, 37sylanbrc 698 . . . . . . . . . . 11  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  F : dom  F --> x )
399, 22mp1i 13 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  F  Fn  dom  F )
4017ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  Smo  F )
41 smogt 7464 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  dom  F  /\  Smo  F  /\  y  e.  dom  F )  -> 
y  C_  ( F `  y ) )
4239, 40, 28, 41syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
y  C_  ( F `  y ) )
43 ordelon 5747 . . . . . . . . . . . . . . . . 17  |-  ( ( Ord  dom  F  /\  y  e.  dom  F )  ->  y  e.  On )
448, 28, 43sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
y  e.  On )
45 simpll 790 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  A  C_  On )
4645, 27sseldd 3604 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  x  e.  On )
47 ontr2 5772 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  On  /\  x  e.  On )  ->  ( ( y  C_  ( F `  y )  /\  ( F `  y )  e.  x
)  ->  y  e.  x ) )
4844, 46, 47syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
( ( y  C_  ( F `  y )  /\  ( F `  y )  e.  x
)  ->  y  e.  x ) )
4942, 35, 48mp2and 715 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
y  e.  x )
5049ex 450 . . . . . . . . . . . . 13  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  (
y  e.  dom  F  ->  y  e.  x ) )
5150ssrdv 3609 . . . . . . . . . . . 12  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  dom  F 
C_  x )
5219, 51ssexd 4805 . . . . . . . . . . 11  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  dom  F  e.  _V )
53 fex2 7121 . . . . . . . . . . 11  |-  ( ( F : dom  F --> x  /\  dom  F  e. 
_V  /\  x  e.  A )  ->  F  e.  _V )
5438, 52, 19, 53syl3anc 1326 . . . . . . . . . 10  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  F  e.  _V )
555ordtype2 8439 . . . . . . . . . 10  |-  ( (  _E  We  A  /\  _E Se  A  /\  F  e. 
_V )  ->  F  Isom  _E  ,  _E  ( dom  F ,  A ) )
5620, 21, 54, 55syl3anc 1326 . . . . . . . . 9  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  F  Isom  _E  ,  _E  ( dom  F ,  A ) )
57 isof1o 6573 . . . . . . . . 9  |-  ( F 
Isom  _E  ,  _E  ( dom  F ,  A
)  ->  F : dom  F -1-1-onto-> A )
58 f1ofo 6144 . . . . . . . . 9  |-  ( F : dom  F -1-1-onto-> A  ->  F : dom  F -onto-> A
)
59 forn 6118 . . . . . . . . 9  |-  ( F : dom  F -onto-> A  ->  ran  F  =  A )
6056, 57, 58, 594syl 19 . . . . . . . 8  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  ran  F  =  A )
6119, 60eleqtrrd 2704 . . . . . . 7  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  x  e.  ran  F )
6261expr 643 . . . . . 6  |-  ( ( A  C_  On  /\  x  e.  A )  ->  ( -.  x  e.  ran  F  ->  x  e.  ran  F ) )
6362pm2.18d 124 . . . . 5  |-  ( ( A  C_  On  /\  x  e.  A )  ->  x  e.  ran  F )
6463ex 450 . . . 4  |-  ( A 
C_  On  ->  ( x  e.  A  ->  x  e.  ran  F ) )
6564ssrdv 3609 . . 3  |-  ( A 
C_  On  ->  A  C_  ran  F )
6618, 65eqssd 3620 . 2  |-  ( A 
C_  On  ->  ran  F  =  A )
6717, 66jca 554 1  |-  ( A 
C_  On  ->  ( Smo 
F  /\  ran  F  =  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    _E cep 5028   Se wse 5071    We wwe 5072   dom cdm 5114   ran crn 5115   Ord word 5722   Oncon0 5723    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889   Smo wsmo 7442  OrdIsocoi 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-smo 7443  df-recs 7468  df-oi 8415
This theorem is referenced by:  oiid  8446  hsmexlem1  9248  hsmexlem2  9249
  Copyright terms: Public domain W3C validator