Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrpred3g Structured version   Visualization version   Unicode version

Theorem dftrpred3g 31733
Description: The transitive predecessors of  X are equal to the predecessors of  X together with their transitive predecessors. (Contributed by Scott Fenton, 26-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dftrpred3g  |-  ( ( X  e.  A  /\  R Se  A )  ->  TrPred ( R ,  A ,  X
)  =  ( Pred ( R ,  A ,  X )  u.  U_ y  e.  Pred  ( R ,  A ,  X
) TrPred ( R ,  A ,  y )
) )
Distinct variable groups:    y, A    y, R    y, X

Proof of Theorem dftrpred3g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elun 3753 . . . . . 6  |-  ( z  e.  ( Pred ( R ,  A ,  X )  u.  U_ y  e.  Pred  ( R ,  A ,  X
) TrPred ( R ,  A ,  y )
)  <->  ( z  e. 
Pred ( R ,  A ,  X )  \/  z  e.  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) ) )
2 predel 5697 . . . . . . . . . . 11  |-  ( z  e.  Pred ( R ,  A ,  X )  ->  z  e.  A )
3 setlikespec 5701 . . . . . . . . . . . . . 14  |-  ( ( z  e.  A  /\  R Se  A )  ->  Pred ( R ,  A , 
z )  e.  _V )
4 trpredpred 31728 . . . . . . . . . . . . . 14  |-  ( Pred ( R ,  A ,  z )  e. 
_V  ->  Pred ( R ,  A ,  z )  C_ 
TrPred ( R ,  A ,  z ) )
53, 4syl 17 . . . . . . . . . . . . 13  |-  ( ( z  e.  A  /\  R Se  A )  ->  Pred ( R ,  A , 
z )  C_  TrPred ( R ,  A ,  z ) )
65expcom 451 . . . . . . . . . . . 12  |-  ( R Se  A  ->  ( z  e.  A  ->  Pred ( R ,  A , 
z )  C_  TrPred ( R ,  A ,  z ) ) )
76adantl 482 . . . . . . . . . . 11  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
z  e.  A  ->  Pred ( R ,  A ,  z )  C_  TrPred ( R ,  A , 
z ) ) )
82, 7syl5 34 . . . . . . . . . 10  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
z  e.  Pred ( R ,  A ,  X )  ->  Pred ( R ,  A , 
z )  C_  TrPred ( R ,  A ,  z ) ) )
98ancld 576 . . . . . . . . 9  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
z  e.  Pred ( R ,  A ,  X )  ->  (
z  e.  Pred ( R ,  A ,  X )  /\  Pred ( R ,  A , 
z )  C_  TrPred ( R ,  A ,  z ) ) ) )
10 trpredeq3 31722 . . . . . . . . . . . 12  |-  ( y  =  z  ->  TrPred ( R ,  A ,  y )  =  TrPred ( R ,  A ,  z ) )
1110sseq2d 3633 . . . . . . . . . . 11  |-  ( y  =  z  ->  ( Pred ( R ,  A ,  z )  C_  TrPred ( R ,  A , 
y )  <->  Pred ( R ,  A ,  z )  C_  TrPred ( R ,  A ,  z ) ) )
1211rspcev 3309 . . . . . . . . . 10  |-  ( ( z  e.  Pred ( R ,  A ,  X )  /\  Pred ( R ,  A , 
z )  C_  TrPred ( R ,  A ,  z ) )  ->  E. y  e.  Pred  ( R ,  A ,  X ) Pred ( R ,  A ,  z )  C_  TrPred ( R ,  A , 
y ) )
13 ssiun 4562 . . . . . . . . . 10  |-  ( E. y  e.  Pred  ( R ,  A ,  X ) Pred ( R ,  A , 
z )  C_  TrPred ( R ,  A ,  y )  ->  Pred ( R ,  A ,  z )  C_  U_ y  e. 
Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) )
1412, 13syl 17 . . . . . . . . 9  |-  ( ( z  e.  Pred ( R ,  A ,  X )  /\  Pred ( R ,  A , 
z )  C_  TrPred ( R ,  A ,  z ) )  ->  Pred ( R ,  A , 
z )  C_  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) )
159, 14syl6 35 . . . . . . . 8  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
z  e.  Pred ( R ,  A ,  X )  ->  Pred ( R ,  A , 
z )  C_  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) ) )
16 eliun 4524 . . . . . . . . 9  |-  ( z  e.  U_ y  e. 
Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y )  <->  E. y  e.  Pred  ( R ,  A ,  X )
z  e.  TrPred ( R ,  A ,  y ) )
17 predel 5697 . . . . . . . . . . . 12  |-  ( y  e.  Pred ( R ,  A ,  X )  ->  y  e.  A )
18 setlikespec 5701 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  A  /\  R Se  A )  ->  Pred ( R ,  A , 
y )  e.  _V )
1918ancoms 469 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R Se  A  /\  y  e.  A )  ->  Pred ( R ,  A , 
y )  e.  _V )
2019adantll 750 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  y  e.  A
)  ->  Pred ( R ,  A ,  y )  e.  _V )
21 trpredss 31729 . . . . . . . . . . . . . . . . . . 19  |-  ( Pred ( R ,  A ,  y )  e. 
_V  ->  TrPred ( R ,  A ,  y )  C_  A )
2220, 21syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  y  e.  A
)  ->  TrPred ( R ,  A ,  y )  C_  A )
2322sseld 3602 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  y  e.  A
)  ->  ( z  e.  TrPred ( R ,  A ,  y )  ->  z  e.  A ) )
243expcom 451 . . . . . . . . . . . . . . . . . 18  |-  ( R Se  A  ->  ( z  e.  A  ->  Pred ( R ,  A , 
z )  e.  _V ) )
2524ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  y  e.  A
)  ->  ( z  e.  A  ->  Pred ( R ,  A , 
z )  e.  _V ) )
2623, 25syld 47 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  y  e.  A
)  ->  ( z  e.  TrPred ( R ,  A ,  y )  ->  Pred ( R ,  A ,  z )  e.  _V ) )
2726imp 445 . . . . . . . . . . . . . . 15  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  y  e.  A )  /\  z  e.  TrPred ( R ,  A ,  y )
)  ->  Pred ( R ,  A ,  z )  e.  _V )
2827, 4syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  y  e.  A )  /\  z  e.  TrPred ( R ,  A ,  y )
)  ->  Pred ( R ,  A ,  z )  C_  TrPred ( R ,  A ,  z ) )
29 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  y  e.  A
)  ->  y  e.  A )
30 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  y  e.  A
)  ->  R Se  A
)
31 trpredelss 31732 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  A  /\  R Se  A )  ->  (
z  e.  TrPred ( R ,  A ,  y )  ->  TrPred ( R ,  A ,  z )  C_  TrPred ( R ,  A ,  y ) ) )
3229, 30, 31syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  y  e.  A
)  ->  ( z  e.  TrPred ( R ,  A ,  y )  -> 
TrPred ( R ,  A ,  z )  C_  TrPred ( R ,  A , 
y ) ) )
3332imp 445 . . . . . . . . . . . . . 14  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  y  e.  A )  /\  z  e.  TrPred ( R ,  A ,  y )
)  ->  TrPred ( R ,  A ,  z )  C_  TrPred ( R ,  A ,  y ) )
3428, 33sstrd 3613 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  y  e.  A )  /\  z  e.  TrPred ( R ,  A ,  y )
)  ->  Pred ( R ,  A ,  z )  C_  TrPred ( R ,  A ,  y ) )
3534exp31 630 . . . . . . . . . . . 12  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
y  e.  A  -> 
( z  e.  TrPred ( R ,  A , 
y )  ->  Pred ( R ,  A , 
z )  C_  TrPred ( R ,  A ,  y ) ) ) )
3617, 35syl5 34 . . . . . . . . . . 11  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
y  e.  Pred ( R ,  A ,  X )  ->  (
z  e.  TrPred ( R ,  A ,  y )  ->  Pred ( R ,  A ,  z )  C_  TrPred ( R ,  A ,  y ) ) ) )
3736reximdvai 3015 . . . . . . . . . 10  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( E. y  e.  Pred  ( R ,  A ,  X ) z  e. 
TrPred ( R ,  A ,  y )  ->  E. y  e.  Pred  ( R ,  A ,  X ) Pred ( R ,  A , 
z )  C_  TrPred ( R ,  A ,  y ) ) )
3837, 13syl6 35 . . . . . . . . 9  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( E. y  e.  Pred  ( R ,  A ,  X ) z  e. 
TrPred ( R ,  A ,  y )  ->  Pred ( R ,  A ,  z )  C_  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) ) )
3916, 38syl5bi 232 . . . . . . . 8  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
z  e.  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y )  ->  Pred ( R ,  A ,  z )  C_  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) ) )
4015, 39jaod 395 . . . . . . 7  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
( z  e.  Pred ( R ,  A ,  X )  \/  z  e.  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) )  ->  Pred ( R ,  A , 
z )  C_  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) ) )
41 ssun4 3779 . . . . . . 7  |-  ( Pred ( R ,  A ,  z )  C_  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y )  ->  Pred ( R ,  A ,  z )  C_  ( Pred ( R ,  A ,  X )  u.  U_ y  e.  Pred  ( R ,  A ,  X
) TrPred ( R ,  A ,  y )
) )
4240, 41syl6 35 . . . . . 6  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
( z  e.  Pred ( R ,  A ,  X )  \/  z  e.  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) )  ->  Pred ( R ,  A , 
z )  C_  ( Pred ( R ,  A ,  X )  u.  U_ y  e.  Pred  ( R ,  A ,  X
) TrPred ( R ,  A ,  y )
) ) )
431, 42syl5bi 232 . . . . 5  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
z  e.  ( Pred ( R ,  A ,  X )  u.  U_ y  e.  Pred  ( R ,  A ,  X
) TrPred ( R ,  A ,  y )
)  ->  Pred ( R ,  A ,  z )  C_  ( Pred ( R ,  A ,  X )  u.  U_ y  e.  Pred  ( R ,  A ,  X
) TrPred ( R ,  A ,  y )
) ) )
4443ralrimiv 2965 . . . 4  |-  ( ( X  e.  A  /\  R Se  A )  ->  A. z  e.  ( Pred ( R ,  A ,  X
)  u.  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) )
Pred ( R ,  A ,  z )  C_  ( Pred ( R ,  A ,  X
)  u.  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) ) )
45 ssun1 3776 . . . 4  |-  Pred ( R ,  A ,  X )  C_  ( Pred ( R ,  A ,  X )  u.  U_ y  e.  Pred  ( R ,  A ,  X
) TrPred ( R ,  A ,  y )
)
4644, 45jctir 561 . . 3  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( A. z  e.  ( Pred ( R ,  A ,  X )  u.  U_ y  e.  Pred  ( R ,  A ,  X
) TrPred ( R ,  A ,  y )
) Pred ( R ,  A ,  z )  C_  ( Pred ( R ,  A ,  X
)  u.  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) )  /\  Pred ( R ,  A ,  X )  C_  ( Pred ( R ,  A ,  X
)  u.  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) ) ) )
47 trpredmintr 31731 . . 3  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. z  e.  ( Pred ( R ,  A ,  X
)  u.  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) )
Pred ( R ,  A ,  z )  C_  ( Pred ( R ,  A ,  X
)  u.  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) )  /\  Pred ( R ,  A ,  X )  C_  ( Pred ( R ,  A ,  X
)  u.  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y ) ) ) )  ->  TrPred ( R ,  A ,  X
)  C_  ( Pred ( R ,  A ,  X )  u.  U_ y  e.  Pred  ( R ,  A ,  X
) TrPred ( R ,  A ,  y )
) )
4846, 47mpdan 702 . 2  |-  ( ( X  e.  A  /\  R Se  A )  ->  TrPred ( R ,  A ,  X
)  C_  ( Pred ( R ,  A ,  X )  u.  U_ y  e.  Pred  ( R ,  A ,  X
) TrPred ( R ,  A ,  y )
) )
49 setlikespec 5701 . . . 4  |-  ( ( X  e.  A  /\  R Se  A )  ->  Pred ( R ,  A ,  X )  e.  _V )
50 trpredpred 31728 . . . 4  |-  ( Pred ( R ,  A ,  X )  e.  _V  ->  Pred ( R ,  A ,  X )  C_ 
TrPred ( R ,  A ,  X ) )
5149, 50syl 17 . . 3  |-  ( ( X  e.  A  /\  R Se  A )  ->  Pred ( R ,  A ,  X )  C_  TrPred ( R ,  A ,  X
) )
5251sseld 3602 . . . . . 6  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
y  e.  Pred ( R ,  A ,  X )  ->  y  e.  TrPred ( R ,  A ,  X )
) )
53 trpredelss 31732 . . . . . 6  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
y  e.  TrPred ( R ,  A ,  X
)  ->  TrPred ( R ,  A ,  y )  C_  TrPred ( R ,  A ,  X
) ) )
5452, 53syld 47 . . . . 5  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
y  e.  Pred ( R ,  A ,  X )  ->  TrPred ( R ,  A ,  y )  C_  TrPred ( R ,  A ,  X
) ) )
5554ralrimiv 2965 . . . 4  |-  ( ( X  e.  A  /\  R Se  A )  ->  A. y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y )  C_  TrPred ( R ,  A ,  X ) )
56 iunss 4561 . . . 4  |-  ( U_ y  e.  Pred  ( R ,  A ,  X
) TrPred ( R ,  A ,  y )  C_ 
TrPred ( R ,  A ,  X )  <->  A. y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y )  C_  TrPred ( R ,  A ,  X ) )
5755, 56sylibr 224 . . 3  |-  ( ( X  e.  A  /\  R Se  A )  ->  U_ y  e.  Pred  ( R ,  A ,  X ) TrPred ( R ,  A ,  y )  C_  TrPred ( R ,  A ,  X ) )
5851, 57unssd 3789 . 2  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( Pred ( R ,  A ,  X )  u.  U_ y  e.  Pred  ( R ,  A ,  X
) TrPred ( R ,  A ,  y )
)  C_  TrPred ( R ,  A ,  X
) )
5948, 58eqssd 3620 1  |-  ( ( X  e.  A  /\  R Se  A )  ->  TrPred ( R ,  A ,  X
)  =  ( Pred ( R ,  A ,  X )  u.  U_ y  e.  Pred  ( R ,  A ,  X
) TrPred ( R ,  A ,  y )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574   U_ciun 4520   Se wse 5071   Predcpred 5679   TrPredctrpred 31717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-trpred 31718
This theorem is referenced by:  dftrpred4g  31734
  Copyright terms: Public domain W3C validator