MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssonprc Structured version   Visualization version   Unicode version

Theorem ssonprc 6992
Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
ssonprc  |-  ( A 
C_  On  ->  ( A  e/  _V  <->  U. A  =  On ) )

Proof of Theorem ssonprc
StepHypRef Expression
1 df-nel 2898 . 2  |-  ( A  e/  _V  <->  -.  A  e.  _V )
2 ssorduni 6985 . . . . . . . 8  |-  ( A 
C_  On  ->  Ord  U. A )
3 ordeleqon 6988 . . . . . . . 8  |-  ( Ord  U. A  <->  ( U. A  e.  On  \/  U. A  =  On ) )
42, 3sylib 208 . . . . . . 7  |-  ( A 
C_  On  ->  ( U. A  e.  On  \/  U. A  =  On ) )
54orcomd 403 . . . . . 6  |-  ( A 
C_  On  ->  ( U. A  =  On  \/  U. A  e.  On ) )
65ord 392 . . . . 5  |-  ( A 
C_  On  ->  ( -. 
U. A  =  On 
->  U. A  e.  On ) )
7 uniexr 6972 . . . . 5  |-  ( U. A  e.  On  ->  A  e.  _V )
86, 7syl6 35 . . . 4  |-  ( A 
C_  On  ->  ( -. 
U. A  =  On 
->  A  e.  _V ) )
98con1d 139 . . 3  |-  ( A 
C_  On  ->  ( -.  A  e.  _V  ->  U. A  =  On ) )
10 onprc 6984 . . . 4  |-  -.  On  e.  _V
11 uniexg 6955 . . . . 5  |-  ( A  e.  _V  ->  U. A  e.  _V )
12 eleq1 2689 . . . . 5  |-  ( U. A  =  On  ->  ( U. A  e.  _V  <->  On  e.  _V ) )
1311, 12syl5ib 234 . . . 4  |-  ( U. A  =  On  ->  ( A  e.  _V  ->  On  e.  _V ) )
1410, 13mtoi 190 . . 3  |-  ( U. A  =  On  ->  -.  A  e.  _V )
159, 14impbid1 215 . 2  |-  ( A 
C_  On  ->  ( -.  A  e.  _V  <->  U. A  =  On ) )
161, 15syl5bb 272 1  |-  ( A 
C_  On  ->  ( A  e/  _V  <->  U. A  =  On ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990    e/ wnel 2897   _Vcvv 3200    C_ wss 3574   U.cuni 4436   Ord word 5722   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  inaprc  9658
  Copyright terms: Public domain W3C validator