MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordeleqon Structured version   Visualization version   Unicode version

Theorem ordeleqon 6988
Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.)
Assertion
Ref Expression
ordeleqon  |-  ( Ord 
A  <->  ( A  e.  On  \/  A  =  On ) )

Proof of Theorem ordeleqon
StepHypRef Expression
1 onprc 6984 . . . 4  |-  -.  On  e.  _V
2 elex 3212 . . . 4  |-  ( On  e.  A  ->  On  e.  _V )
31, 2mto 188 . . 3  |-  -.  On  e.  A
4 ordon 6982 . . . . . 6  |-  Ord  On
5 ordtri3or 5755 . . . . . 6  |-  ( ( Ord  A  /\  Ord  On )  ->  ( A  e.  On  \/  A  =  On  \/  On  e.  A ) )
64, 5mpan2 707 . . . . 5  |-  ( Ord 
A  ->  ( A  e.  On  \/  A  =  On  \/  On  e.  A ) )
7 df-3or 1038 . . . . 5  |-  ( ( A  e.  On  \/  A  =  On  \/  On  e.  A )  <->  ( ( A  e.  On  \/  A  =  On )  \/  On  e.  A ) )
86, 7sylib 208 . . . 4  |-  ( Ord 
A  ->  ( ( A  e.  On  \/  A  =  On )  \/  On  e.  A ) )
98ord 392 . . 3  |-  ( Ord 
A  ->  ( -.  ( A  e.  On  \/  A  =  On )  ->  On  e.  A
) )
103, 9mt3i 141 . 2  |-  ( Ord 
A  ->  ( A  e.  On  \/  A  =  On ) )
11 eloni 5733 . . 3  |-  ( A  e.  On  ->  Ord  A )
12 ordeq 5730 . . . 4  |-  ( A  =  On  ->  ( Ord  A  <->  Ord  On ) )
134, 12mpbiri 248 . . 3  |-  ( A  =  On  ->  Ord  A )
1411, 13jaoi 394 . 2  |-  ( ( A  e.  On  \/  A  =  On )  ->  Ord  A )
1510, 14impbii 199 1  |-  ( Ord 
A  <->  ( A  e.  On  \/  A  =  On ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    \/ w3o 1036    = wceq 1483    e. wcel 1990   _Vcvv 3200   Ord word 5722   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  ordsson  6989  ssonprc  6992  ordunisuc  7032  orduninsuc  7043  limomss  7070  omon  7076  limom  7080  tfrlem14  7487  tfr2b  7492  unialeph  8924  ordtoplem  32434  ordcmp  32446
  Copyright terms: Public domain W3C validator