| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > stadd3i | Structured version Visualization version Unicode version | ||
| Description: If the sum of 3 states is 3, then each state is 1. (Contributed by NM, 13-Nov-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| stle.1 |
|
| stle.2 |
|
| stm1add3.3 |
|
| Ref | Expression |
|---|---|
| stadd3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stle.1 |
. . . . . 6
| |
| 2 | stcl 29075 |
. . . . . 6
| |
| 3 | 1, 2 | mpi 20 |
. . . . 5
|
| 4 | 3 | recnd 10068 |
. . . 4
|
| 5 | stle.2 |
. . . . . 6
| |
| 6 | stcl 29075 |
. . . . . 6
| |
| 7 | 5, 6 | mpi 20 |
. . . . 5
|
| 8 | 7 | recnd 10068 |
. . . 4
|
| 9 | stm1add3.3 |
. . . . . 6
| |
| 10 | stcl 29075 |
. . . . . 6
| |
| 11 | 9, 10 | mpi 20 |
. . . . 5
|
| 12 | 11 | recnd 10068 |
. . . 4
|
| 13 | 4, 8, 12 | addassd 10062 |
. . 3
|
| 14 | 13 | eqeq1d 2624 |
. 2
|
| 15 | eqcom 2629 |
. . . 4
| |
| 16 | 7, 11 | readdcld 10069 |
. . . . . . 7
|
| 17 | 3, 16 | readdcld 10069 |
. . . . . 6
|
| 18 | ltne 10134 |
. . . . . . 7
| |
| 19 | 18 | ex 450 |
. . . . . 6
|
| 20 | 17, 19 | syl 17 |
. . . . 5
|
| 21 | 20 | necon2bd 2810 |
. . . 4
|
| 22 | 15, 21 | syl5bi 232 |
. . 3
|
| 23 | 1re 10039 |
. . . . . . . . . . 11
| |
| 24 | 23, 23 | readdcli 10053 |
. . . . . . . . . 10
|
| 25 | 24 | a1i 11 |
. . . . . . . . 9
|
| 26 | 1red 10055 |
. . . . . . . . . 10
| |
| 27 | stle1 29084 |
. . . . . . . . . . 11
| |
| 28 | 5, 27 | mpi 20 |
. . . . . . . . . 10
|
| 29 | stle1 29084 |
. . . . . . . . . . 11
| |
| 30 | 9, 29 | mpi 20 |
. . . . . . . . . 10
|
| 31 | 7, 11, 26, 26, 28, 30 | le2addd 10646 |
. . . . . . . . 9
|
| 32 | 16, 25, 3, 31 | leadd2dd 10642 |
. . . . . . . 8
|
| 33 | 32 | adantr 481 |
. . . . . . 7
|
| 34 | ltadd1 10495 |
. . . . . . . . . 10
| |
| 35 | 34 | biimpd 219 |
. . . . . . . . 9
|
| 36 | 3, 26, 25, 35 | syl3anc 1326 |
. . . . . . . 8
|
| 37 | 36 | imp 445 |
. . . . . . 7
|
| 38 | readdcl 10019 |
. . . . . . . . . 10
| |
| 39 | 3, 24, 38 | sylancl 694 |
. . . . . . . . 9
|
| 40 | 23, 24 | readdcli 10053 |
. . . . . . . . . 10
|
| 41 | 40 | a1i 11 |
. . . . . . . . 9
|
| 42 | lelttr 10128 |
. . . . . . . . 9
| |
| 43 | 17, 39, 41, 42 | syl3anc 1326 |
. . . . . . . 8
|
| 44 | 43 | adantr 481 |
. . . . . . 7
|
| 45 | 33, 37, 44 | mp2and 715 |
. . . . . 6
|
| 46 | df-3 11080 |
. . . . . . 7
| |
| 47 | df-2 11079 |
. . . . . . . 8
| |
| 48 | 47 | oveq1i 6660 |
. . . . . . 7
|
| 49 | ax-1cn 9994 |
. . . . . . . 8
| |
| 50 | 49, 49, 49 | addassi 10048 |
. . . . . . 7
|
| 51 | 46, 48, 50 | 3eqtrri 2649 |
. . . . . 6
|
| 52 | 45, 51 | syl6breq 4694 |
. . . . 5
|
| 53 | 52 | ex 450 |
. . . 4
|
| 54 | 53 | con3d 148 |
. . 3
|
| 55 | stle1 29084 |
. . . . . 6
| |
| 56 | 1, 55 | mpi 20 |
. . . . 5
|
| 57 | leloe 10124 |
. . . . . 6
| |
| 58 | 3, 23, 57 | sylancl 694 |
. . . . 5
|
| 59 | 56, 58 | mpbid 222 |
. . . 4
|
| 60 | 59 | ord 392 |
. . 3
|
| 61 | 22, 54, 60 | 3syld 60 |
. 2
|
| 62 | 14, 61 | sylbid 230 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-hilex 27856 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-2 11079 df-3 11080 df-icc 12182 df-sh 28064 df-ch 28078 df-st 29070 |
| This theorem is referenced by: golem2 29131 |
| Copyright terms: Public domain | W3C validator |