MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc11 Structured version   Visualization version   Unicode version

Theorem suc11 5831
Description: The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
suc11  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )

Proof of Theorem suc11
StepHypRef Expression
1 eloni 5733 . . . . 5  |-  ( A  e.  On  ->  Ord  A )
2 ordn2lp 5743 . . . . 5  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  A )
)
3 pm3.13 522 . . . . 5  |-  ( -.  ( A  e.  B  /\  B  e.  A
)  ->  ( -.  A  e.  B  \/  -.  B  e.  A
) )
41, 2, 33syl 18 . . . 4  |-  ( A  e.  On  ->  ( -.  A  e.  B  \/  -.  B  e.  A
) )
54adantr 481 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  e.  B  \/  -.  B  e.  A ) )
6 eqimss 3657 . . . . . 6  |-  ( suc 
A  =  suc  B  ->  suc  A  C_  suc  B )
7 sucssel 5819 . . . . . 6  |-  ( A  e.  On  ->  ( suc  A  C_  suc  B  ->  A  e.  suc  B ) )
86, 7syl5 34 . . . . 5  |-  ( A  e.  On  ->  ( suc  A  =  suc  B  ->  A  e.  suc  B
) )
9 elsuci 5791 . . . . . . 7  |-  ( A  e.  suc  B  -> 
( A  e.  B  \/  A  =  B
) )
109ord 392 . . . . . 6  |-  ( A  e.  suc  B  -> 
( -.  A  e.  B  ->  A  =  B ) )
1110com12 32 . . . . 5  |-  ( -.  A  e.  B  -> 
( A  e.  suc  B  ->  A  =  B ) )
128, 11syl9 77 . . . 4  |-  ( A  e.  On  ->  ( -.  A  e.  B  ->  ( suc  A  =  suc  B  ->  A  =  B ) ) )
13 eqimss2 3658 . . . . . 6  |-  ( suc 
A  =  suc  B  ->  suc  B  C_  suc  A )
14 sucssel 5819 . . . . . 6  |-  ( B  e.  On  ->  ( suc  B  C_  suc  A  ->  B  e.  suc  A ) )
1513, 14syl5 34 . . . . 5  |-  ( B  e.  On  ->  ( suc  A  =  suc  B  ->  B  e.  suc  A
) )
16 elsuci 5791 . . . . . . . 8  |-  ( B  e.  suc  A  -> 
( B  e.  A  \/  B  =  A
) )
1716ord 392 . . . . . . 7  |-  ( B  e.  suc  A  -> 
( -.  B  e.  A  ->  B  =  A ) )
18 eqcom 2629 . . . . . . 7  |-  ( B  =  A  <->  A  =  B )
1917, 18syl6ib 241 . . . . . 6  |-  ( B  e.  suc  A  -> 
( -.  B  e.  A  ->  A  =  B ) )
2019com12 32 . . . . 5  |-  ( -.  B  e.  A  -> 
( B  e.  suc  A  ->  A  =  B ) )
2115, 20syl9 77 . . . 4  |-  ( B  e.  On  ->  ( -.  B  e.  A  ->  ( suc  A  =  suc  B  ->  A  =  B ) ) )
2212, 21jaao 531 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( -.  A  e.  B  \/  -.  B  e.  A )  ->  ( suc  A  =  suc  B  ->  A  =  B ) ) )
235, 22mpd 15 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  A  =  suc  B  ->  A  =  B ) )
24 suceq 5790 . 2  |-  ( A  =  B  ->  suc  A  =  suc  B )
2523, 24impbid1 215 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   Ord word 5722   Oncon0 5723   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729
This theorem is referenced by:  peano4  7088  limenpsi  8135  fin1a2lem2  9223  bnj168  30798  sltval2  31809  sltsolem1  31826  nosepnelem  31830  nolt02o  31845  onsuct0  32440
  Copyright terms: Public domain W3C validator