| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suc11 | Structured version Visualization version Unicode version | ||
| Description: The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| suc11 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 5733 |
. . . . 5
| |
| 2 | ordn2lp 5743 |
. . . . 5
| |
| 3 | pm3.13 522 |
. . . . 5
| |
| 4 | 1, 2, 3 | 3syl 18 |
. . . 4
|
| 5 | 4 | adantr 481 |
. . 3
|
| 6 | eqimss 3657 |
. . . . . 6
| |
| 7 | sucssel 5819 |
. . . . . 6
| |
| 8 | 6, 7 | syl5 34 |
. . . . 5
|
| 9 | elsuci 5791 |
. . . . . . 7
| |
| 10 | 9 | ord 392 |
. . . . . 6
|
| 11 | 10 | com12 32 |
. . . . 5
|
| 12 | 8, 11 | syl9 77 |
. . . 4
|
| 13 | eqimss2 3658 |
. . . . . 6
| |
| 14 | sucssel 5819 |
. . . . . 6
| |
| 15 | 13, 14 | syl5 34 |
. . . . 5
|
| 16 | elsuci 5791 |
. . . . . . . 8
| |
| 17 | 16 | ord 392 |
. . . . . . 7
|
| 18 | eqcom 2629 |
. . . . . . 7
| |
| 19 | 17, 18 | syl6ib 241 |
. . . . . 6
|
| 20 | 19 | com12 32 |
. . . . 5
|
| 21 | 15, 20 | syl9 77 |
. . . 4
|
| 22 | 12, 21 | jaao 531 |
. . 3
|
| 23 | 5, 22 | mpd 15 |
. 2
|
| 24 | suceq 5790 |
. 2
| |
| 25 | 23, 24 | impbid1 215 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-suc 5729 |
| This theorem is referenced by: peano4 7088 limenpsi 8135 fin1a2lem2 9223 bnj168 30798 sltval2 31809 sltsolem1 31826 nosepnelem 31830 nolt02o 31845 onsuct0 32440 |
| Copyright terms: Public domain | W3C validator |