MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supfil Structured version   Visualization version   Unicode version

Theorem supfil 21699
Description: The supersets of a nonempty set which are also subsets of a given base set form a filter. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
supfil  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  { x  e.  ~P A  |  B  C_  x }  e.  ( Fil `  A ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem supfil
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 3627 . . . . 5  |-  ( x  =  y  ->  ( B  C_  x  <->  B  C_  y
) )
21elrab 3363 . . . 4  |-  ( y  e.  { x  e. 
~P A  |  B  C_  x }  <->  ( y  e.  ~P A  /\  B  C_  y ) )
3 selpw 4165 . . . . 5  |-  ( y  e.  ~P A  <->  y  C_  A )
43anbi1i 731 . . . 4  |-  ( ( y  e.  ~P A  /\  B  C_  y )  <-> 
( y  C_  A  /\  B  C_  y ) )
52, 4bitri 264 . . 3  |-  ( y  e.  { x  e. 
~P A  |  B  C_  x }  <->  ( y  C_  A  /\  B  C_  y ) )
65a1i 11 . 2  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  (
y  e.  { x  e.  ~P A  |  B  C_  x }  <->  ( y  C_  A  /\  B  C_  y ) ) )
7 elex 3212 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
873ad2ant1 1082 . 2  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  A  e.  _V )
9 simp2 1062 . . 3  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  B  C_  A )
10 sseq2 3627 . . . . 5  |-  ( y  =  A  ->  ( B  C_  y  <->  B  C_  A
) )
1110sbcieg 3468 . . . 4  |-  ( A  e.  _V  ->  ( [. A  /  y ]. B  C_  y  <->  B  C_  A
) )
128, 11syl 17 . . 3  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  ( [. A  /  y ]. B  C_  y  <->  B  C_  A
) )
139, 12mpbird 247 . 2  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  [. A  /  y ]. B  C_  y )
14 ss0 3974 . . . . 5  |-  ( B 
C_  (/)  ->  B  =  (/) )
1514necon3ai 2819 . . . 4  |-  ( B  =/=  (/)  ->  -.  B  C_  (/) )
16153ad2ant3 1084 . . 3  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  -.  B  C_  (/) )
17 0ex 4790 . . . 4  |-  (/)  e.  _V
18 sseq2 3627 . . . 4  |-  ( y  =  (/)  ->  ( B 
C_  y  <->  B  C_  (/) ) )
1917, 18sbcie 3470 . . 3  |-  ( [. (/)  /  y ]. B  C_  y  <->  B  C_  (/) )
2016, 19sylnibr 319 . 2  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  -.  [. (/)  /  y ]. B  C_  y )
21 sstr 3611 . . . . 5  |-  ( ( B  C_  w  /\  w  C_  z )  ->  B  C_  z )
2221expcom 451 . . . 4  |-  ( w 
C_  z  ->  ( B  C_  w  ->  B  C_  z ) )
23 vex 3203 . . . . 5  |-  w  e. 
_V
24 sseq2 3627 . . . . 5  |-  ( y  =  w  ->  ( B  C_  y  <->  B  C_  w
) )
2523, 24sbcie 3470 . . . 4  |-  ( [. w  /  y ]. B  C_  y  <->  B  C_  w )
26 vex 3203 . . . . 5  |-  z  e. 
_V
27 sseq2 3627 . . . . 5  |-  ( y  =  z  ->  ( B  C_  y  <->  B  C_  z
) )
2826, 27sbcie 3470 . . . 4  |-  ( [. z  /  y ]. B  C_  y  <->  B  C_  z )
2922, 25, 283imtr4g 285 . . 3  |-  ( w 
C_  z  ->  ( [. w  /  y ]. B  C_  y  ->  [. z  /  y ]. B  C_  y ) )
30293ad2ant3 1084 . 2  |-  ( ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  /\  z  C_  A  /\  w  C_  z )  ->  ( [. w  /  y ]. B  C_  y  ->  [. z  /  y ]. B  C_  y ) )
31 ssin 3835 . . . . . 6  |-  ( ( B  C_  z  /\  B  C_  w )  <->  B  C_  (
z  i^i  w )
)
3231biimpi 206 . . . . 5  |-  ( ( B  C_  z  /\  B  C_  w )  ->  B  C_  ( z  i^i  w ) )
3328, 25, 32syl2anb 496 . . . 4  |-  ( (
[. z  /  y ]. B  C_  y  /\  [. w  /  y ]. B  C_  y )  ->  B  C_  ( z  i^i  w ) )
3426inex1 4799 . . . . 5  |-  ( z  i^i  w )  e. 
_V
35 sseq2 3627 . . . . 5  |-  ( y  =  ( z  i^i  w )  ->  ( B  C_  y  <->  B  C_  (
z  i^i  w )
) )
3634, 35sbcie 3470 . . . 4  |-  ( [. ( z  i^i  w
)  /  y ]. B  C_  y  <->  B  C_  (
z  i^i  w )
)
3733, 36sylibr 224 . . 3  |-  ( (
[. z  /  y ]. B  C_  y  /\  [. w  /  y ]. B  C_  y )  ->  [. ( z  i^i  w
)  /  y ]. B  C_  y )
3837a1i 11 . 2  |-  ( ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  /\  z  C_  A  /\  w  C_  A )  ->  (
( [. z  /  y ]. B  C_  y  /\  [. w  /  y ]. B  C_  y )  ->  [. ( z  i^i  w
)  /  y ]. B  C_  y ) )
396, 8, 13, 20, 30, 38isfild 21662 1  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  { x  e.  ~P A  |  B  C_  x }  e.  ( Fil `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200   [.wsbc 3435    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   ` cfv 5888   Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-fbas 19743  df-fil 21650
This theorem is referenced by:  fclscf  21829  flimfnfcls  21832
  Copyright terms: Public domain W3C validator