MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csdfil Structured version   Visualization version   Unicode version

Theorem csdfil 21698
Description: The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
csdfil  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  { x  e.  ~P X  |  ( X  \  x )  ~<  X }  e.  ( Fil `  X
) )
Distinct variable group:    x, X

Proof of Theorem csdfil
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 3722 . . . . . 6  |-  ( x  =  y  ->  ( X  \  x )  =  ( X  \  y
) )
21breq1d 4663 . . . . 5  |-  ( x  =  y  ->  (
( X  \  x
)  ~<  X  <->  ( X  \  y )  ~<  X ) )
32elrab 3363 . . . 4  |-  ( y  e.  { x  e. 
~P X  |  ( X  \  x ) 
~<  X }  <->  ( y  e.  ~P X  /\  ( X  \  y )  ~<  X ) )
4 selpw 4165 . . . . 5  |-  ( y  e.  ~P X  <->  y  C_  X )
54anbi1i 731 . . . 4  |-  ( ( y  e.  ~P X  /\  ( X  \  y
)  ~<  X )  <->  ( y  C_  X  /\  ( X 
\  y )  ~<  X ) )
63, 5bitri 264 . . 3  |-  ( y  e.  { x  e. 
~P X  |  ( X  \  x ) 
~<  X }  <->  ( y  C_  X  /\  ( X 
\  y )  ~<  X ) )
76a1i 11 . 2  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( y  e.  {
x  e.  ~P X  |  ( X  \  x )  ~<  X }  <->  ( y  C_  X  /\  ( X  \  y
)  ~<  X ) ) )
8 elex 3212 . . 3  |-  ( X  e.  dom  card  ->  X  e.  _V )
98adantr 481 . 2  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  X  e.  _V )
10 difid 3948 . . . 4  |-  ( X 
\  X )  =  (/)
11 infn0 8222 . . . . . 6  |-  ( om  ~<_  X  ->  X  =/=  (/) )
1211adantl 482 . . . . 5  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  X  =/=  (/) )
13 0sdomg 8089 . . . . . 6  |-  ( X  e.  dom  card  ->  (
(/)  ~<  X  <->  X  =/=  (/) ) )
1413adantr 481 . . . . 5  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( (/)  ~<  X  <->  X  =/=  (/) ) )
1512, 14mpbird 247 . . . 4  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  (/) 
~<  X )
1610, 15syl5eqbr 4688 . . 3  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( X  \  X
)  ~<  X )
17 difeq2 3722 . . . . . 6  |-  ( y  =  X  ->  ( X  \  y )  =  ( X  \  X
) )
1817breq1d 4663 . . . . 5  |-  ( y  =  X  ->  (
( X  \  y
)  ~<  X  <->  ( X  \  X )  ~<  X ) )
1918sbcieg 3468 . . . 4  |-  ( X  e.  dom  card  ->  (
[. X  /  y ]. ( X  \  y
)  ~<  X  <->  ( X  \  X )  ~<  X ) )
2019adantr 481 . . 3  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( [. X  /  y ]. ( X  \  y
)  ~<  X  <->  ( X  \  X )  ~<  X ) )
2116, 20mpbird 247 . 2  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  [. X  /  y ]. ( X  \  y
)  ~<  X )
22 sdomirr 8097 . . 3  |-  -.  X  ~<  X
23 0ex 4790 . . . . 5  |-  (/)  e.  _V
24 difeq2 3722 . . . . . . 7  |-  ( y  =  (/)  ->  ( X 
\  y )  =  ( X  \  (/) ) )
25 dif0 3950 . . . . . . 7  |-  ( X 
\  (/) )  =  X
2624, 25syl6eq 2672 . . . . . 6  |-  ( y  =  (/)  ->  ( X 
\  y )  =  X )
2726breq1d 4663 . . . . 5  |-  ( y  =  (/)  ->  ( ( X  \  y ) 
~<  X  <->  X  ~<  X ) )
2823, 27sbcie 3470 . . . 4  |-  ( [. (/)  /  y ]. ( X  \  y )  ~<  X 
<->  X  ~<  X )
2928a1i 11 . . 3  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( [. (/)  /  y ]. ( X  \  y
)  ~<  X  <->  X  ~<  X ) )
3022, 29mtbiri 317 . 2  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  -.  [. (/)  /  y ]. ( X  \  y
)  ~<  X )
31 simp1l 1085 . . . . . 6  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  z )  ->  X  e.  dom  card )
32 difexg 4808 . . . . . 6  |-  ( X  e.  dom  card  ->  ( X  \  w )  e.  _V )
3331, 32syl 17 . . . . 5  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  z )  ->  ( X  \  w )  e. 
_V )
34 sscon 3744 . . . . . 6  |-  ( w 
C_  z  ->  ( X  \  z )  C_  ( X  \  w
) )
35343ad2ant3 1084 . . . . 5  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  z )  ->  ( X  \  z )  C_  ( X  \  w
) )
36 ssdomg 8001 . . . . 5  |-  ( ( X  \  w )  e.  _V  ->  (
( X  \  z
)  C_  ( X  \  w )  ->  ( X  \  z )  ~<_  ( X  \  w ) ) )
3733, 35, 36sylc 65 . . . 4  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  z )  ->  ( X  \  z )  ~<_  ( X  \  w ) )
38 domsdomtr 8095 . . . . 5  |-  ( ( ( X  \  z
)  ~<_  ( X  \  w )  /\  ( X  \  w )  ~<  X )  ->  ( X  \  z )  ~<  X )
3938ex 450 . . . 4  |-  ( ( X  \  z )  ~<_  ( X  \  w
)  ->  ( ( X  \  w )  ~<  X  ->  ( X  \ 
z )  ~<  X ) )
4037, 39syl 17 . . 3  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  z )  ->  (
( X  \  w
)  ~<  X  ->  ( X  \  z )  ~<  X ) )
41 vex 3203 . . . 4  |-  w  e. 
_V
42 difeq2 3722 . . . . 5  |-  ( y  =  w  ->  ( X  \  y )  =  ( X  \  w
) )
4342breq1d 4663 . . . 4  |-  ( y  =  w  ->  (
( X  \  y
)  ~<  X  <->  ( X  \  w )  ~<  X ) )
4441, 43sbcie 3470 . . 3  |-  ( [. w  /  y ]. ( X  \  y )  ~<  X 
<->  ( X  \  w
)  ~<  X )
45 vex 3203 . . . 4  |-  z  e. 
_V
46 difeq2 3722 . . . . 5  |-  ( y  =  z  ->  ( X  \  y )  =  ( X  \  z
) )
4746breq1d 4663 . . . 4  |-  ( y  =  z  ->  (
( X  \  y
)  ~<  X  <->  ( X  \  z )  ~<  X ) )
4845, 47sbcie 3470 . . 3  |-  ( [. z  /  y ]. ( X  \  y )  ~<  X 
<->  ( X  \  z
)  ~<  X )
4940, 44, 483imtr4g 285 . 2  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  z )  ->  ( [. w  /  y ]. ( X  \  y
)  ~<  X  ->  [. z  /  y ]. ( X  \  y )  ~<  X ) )
50 infunsdom 9036 . . . . . 6  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  ( ( X  \ 
z )  ~<  X  /\  ( X  \  w
)  ~<  X ) )  ->  ( ( X 
\  z )  u.  ( X  \  w
) )  ~<  X )
5150ex 450 . . . . 5  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( ( ( X 
\  z )  ~<  X  /\  ( X  \  w )  ~<  X )  ->  ( ( X 
\  z )  u.  ( X  \  w
) )  ~<  X ) )
52 difindi 3881 . . . . . 6  |-  ( X 
\  ( z  i^i  w ) )  =  ( ( X  \ 
z )  u.  ( X  \  w ) )
5352breq1i 4660 . . . . 5  |-  ( ( X  \  ( z  i^i  w ) ) 
~<  X  <->  ( ( X 
\  z )  u.  ( X  \  w
) )  ~<  X )
5451, 53syl6ibr 242 . . . 4  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( ( ( X 
\  z )  ~<  X  /\  ( X  \  w )  ~<  X )  ->  ( X  \ 
( z  i^i  w
) )  ~<  X ) )
55543ad2ant1 1082 . . 3  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  X )  ->  (
( ( X  \ 
z )  ~<  X  /\  ( X  \  w
)  ~<  X )  -> 
( X  \  (
z  i^i  w )
)  ~<  X ) )
5648, 44anbi12i 733 . . 3  |-  ( (
[. z  /  y ]. ( X  \  y
)  ~<  X  /\  [. w  /  y ]. ( X  \  y )  ~<  X )  <->  ( ( X  \  z )  ~<  X  /\  ( X  \  w )  ~<  X ) )
5745inex1 4799 . . . 4  |-  ( z  i^i  w )  e. 
_V
58 difeq2 3722 . . . . 5  |-  ( y  =  ( z  i^i  w )  ->  ( X  \  y )  =  ( X  \  (
z  i^i  w )
) )
5958breq1d 4663 . . . 4  |-  ( y  =  ( z  i^i  w )  ->  (
( X  \  y
)  ~<  X  <->  ( X  \  ( z  i^i  w
) )  ~<  X ) )
6057, 59sbcie 3470 . . 3  |-  ( [. ( z  i^i  w
)  /  y ]. ( X  \  y
)  ~<  X  <->  ( X  \  ( z  i^i  w
) )  ~<  X )
6155, 56, 603imtr4g 285 . 2  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  X )  ->  (
( [. z  /  y ]. ( X  \  y
)  ~<  X  /\  [. w  /  y ]. ( X  \  y )  ~<  X )  ->  [. (
z  i^i  w )  /  y ]. ( X  \  y )  ~<  X ) )
627, 9, 21, 30, 49, 61isfild 21662 1  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  { x  e.  ~P X  |  ( X  \  x )  ~<  X }  e.  ( Fil `  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200   [.wsbc 3435    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114   ` cfv 5888   omcom 7065    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761   Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-cda 8990  df-fbas 19743  df-fil 21650
This theorem is referenced by:  ufilen  21734
  Copyright terms: Public domain W3C validator