MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2a Structured version   Visualization version   Unicode version

Theorem sylow2a 18034
Description: A named lemma of Sylow's second and third theorems. If  G is a finite  P-group that acts on the finite set  Y, then the set  Z of all points of  Y fixed by every element of  G has cardinality equivalent to the cardinality of  Y, 
mod  P. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x  |-  X  =  ( Base `  G
)
sylow2a.m  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  Y ) )
sylow2a.p  |-  ( ph  ->  P pGrp  G )
sylow2a.f  |-  ( ph  ->  X  e.  Fin )
sylow2a.y  |-  ( ph  ->  Y  e.  Fin )
sylow2a.z  |-  Z  =  { u  e.  Y  |  A. h  e.  X  ( h  .(+)  u )  =  u }
sylow2a.r  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
Assertion
Ref Expression
sylow2a  |-  ( ph  ->  P  ||  ( (
# `  Y )  -  ( # `  Z
) ) )
Distinct variable groups:    .~ , h    g, h, u, x, y    g, G, x, y    .(+) , g, h, u, x, y    g, X, h, u, x, y    ph, h    g, Y, h, u, x, y
Allowed substitution hints:    ph( x, y, u, g)    P( x, y, u, g, h)    .~ ( x, y, u, g)    G( u, h)    Z( x, y, u, g, h)

Proof of Theorem sylow2a
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2a.x . . 3  |-  X  =  ( Base `  G
)
2 sylow2a.m . . 3  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  Y ) )
3 sylow2a.p . . 3  |-  ( ph  ->  P pGrp  G )
4 sylow2a.f . . 3  |-  ( ph  ->  X  e.  Fin )
5 sylow2a.y . . 3  |-  ( ph  ->  Y  e.  Fin )
6 sylow2a.z . . 3  |-  Z  =  { u  e.  Y  |  A. h  e.  X  ( h  .(+)  u )  =  u }
7 sylow2a.r . . 3  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
81, 2, 3, 4, 5, 6, 7sylow2alem2 18033 . 2  |-  ( ph  ->  P  ||  sum_ z  e.  ( ( Y /.  .~  )  \  ~P Z
) ( # `  z
) )
9 inass 3823 . . . . . . 7  |-  ( ( ( Y /.  .~  )  i^i  ~P Z )  i^i  ( ( Y /.  .~  )  \  ~P Z ) )  =  ( ( Y /.  .~  )  i^i  ( ~P Z  i^i  ( ( Y /.  .~  )  \  ~P Z ) ) )
10 disjdif 4040 . . . . . . . 8  |-  ( ~P Z  i^i  ( ( Y /.  .~  )  \  ~P Z ) )  =  (/)
1110ineq2i 3811 . . . . . . 7  |-  ( ( Y /.  .~  )  i^i  ( ~P Z  i^i  ( ( Y /.  .~  )  \  ~P Z
) ) )  =  ( ( Y /.  .~  )  i^i  (/) )
12 in0 3968 . . . . . . 7  |-  ( ( Y /.  .~  )  i^i  (/) )  =  (/)
139, 11, 123eqtri 2648 . . . . . 6  |-  ( ( ( Y /.  .~  )  i^i  ~P Z )  i^i  ( ( Y /.  .~  )  \  ~P Z ) )  =  (/)
1413a1i 11 . . . . 5  |-  ( ph  ->  ( ( ( Y /.  .~  )  i^i 
~P Z )  i^i  ( ( Y /.  .~  )  \  ~P Z
) )  =  (/) )
15 inundif 4046 . . . . . . 7  |-  ( ( ( Y /.  .~  )  i^i  ~P Z )  u.  ( ( Y /.  .~  )  \  ~P Z ) )  =  ( Y /.  .~  )
1615eqcomi 2631 . . . . . 6  |-  ( Y /.  .~  )  =  ( ( ( Y /.  .~  )  i^i 
~P Z )  u.  ( ( Y /.  .~  )  \  ~P Z
) )
1716a1i 11 . . . . 5  |-  ( ph  ->  ( Y /.  .~  )  =  ( (
( Y /.  .~  )  i^i  ~P Z )  u.  ( ( Y /.  .~  )  \  ~P Z ) ) )
18 pwfi 8261 . . . . . . 7  |-  ( Y  e.  Fin  <->  ~P Y  e.  Fin )
195, 18sylib 208 . . . . . 6  |-  ( ph  ->  ~P Y  e.  Fin )
207, 1gaorber 17741 . . . . . . . 8  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .~  Er  Y
)
212, 20syl 17 . . . . . . 7  |-  ( ph  ->  .~  Er  Y )
2221qsss 7808 . . . . . 6  |-  ( ph  ->  ( Y /.  .~  )  C_  ~P Y )
2319, 22ssfid 8183 . . . . 5  |-  ( ph  ->  ( Y /.  .~  )  e.  Fin )
245adantr 481 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  Y  e.  Fin )
2522sselda 3603 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  z  e.  ~P Y )
2625elpwid 4170 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  z  C_  Y )
2724, 26ssfid 8183 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  z  e.  Fin )
28 hashcl 13147 . . . . . . 7  |-  ( z  e.  Fin  ->  ( # `
 z )  e. 
NN0 )
2927, 28syl 17 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  ( # `  z
)  e.  NN0 )
3029nn0cnd 11353 . . . . 5  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  ( # `  z
)  e.  CC )
3114, 17, 23, 30fsumsplit 14471 . . . 4  |-  ( ph  -> 
sum_ z  e.  ( Y /.  .~  )
( # `  z )  =  ( sum_ z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) ( # `  z
)  +  sum_ z  e.  ( ( Y /.  .~  )  \  ~P Z
) ( # `  z
) ) )
3221, 5qshash 14559 . . . 4  |-  ( ph  ->  ( # `  Y
)  =  sum_ z  e.  ( Y /.  .~  ) ( # `  z
) )
33 inss1 3833 . . . . . . . 8  |-  ( ( Y /.  .~  )  i^i  ~P Z )  C_  ( Y /.  .~  )
34 ssfi 8180 . . . . . . . 8  |-  ( ( ( Y /.  .~  )  e.  Fin  /\  (
( Y /.  .~  )  i^i  ~P Z ) 
C_  ( Y /.  .~  ) )  ->  (
( Y /.  .~  )  i^i  ~P Z )  e.  Fin )
3523, 33, 34sylancl 694 . . . . . . 7  |-  ( ph  ->  ( ( Y /.  .~  )  i^i  ~P Z
)  e.  Fin )
36 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
37 fsumconst 14522 . . . . . . 7  |-  ( ( ( ( Y /.  .~  )  i^i  ~P Z
)  e.  Fin  /\  1  e.  CC )  -> 
sum_ z  e.  ( ( Y /.  .~  )  i^i  ~P Z ) 1  =  ( (
# `  ( ( Y /.  .~  )  i^i 
~P Z ) )  x.  1 ) )
3835, 36, 37sylancl 694 . . . . . 6  |-  ( ph  -> 
sum_ z  e.  ( ( Y /.  .~  )  i^i  ~P Z ) 1  =  ( (
# `  ( ( Y /.  .~  )  i^i 
~P Z ) )  x.  1 ) )
39 elin 3796 . . . . . . . . . . 11  |-  ( z  e.  ( ( Y /.  .~  )  i^i 
~P Z )  <->  ( z  e.  ( Y /.  .~  )  /\  z  e.  ~P Z ) )
40 eqid 2622 . . . . . . . . . . . . 13  |-  ( Y /.  .~  )  =  ( Y /.  .~  )
41 sseq1 3626 . . . . . . . . . . . . . . 15  |-  ( [ w ]  .~  =  z  ->  ( [ w ]  .~  C_  Z  <->  z  C_  Z ) )
42 selpw 4165 . . . . . . . . . . . . . . 15  |-  ( z  e.  ~P Z  <->  z  C_  Z )
4341, 42syl6bbr 278 . . . . . . . . . . . . . 14  |-  ( [ w ]  .~  =  z  ->  ( [ w ]  .~  C_  Z  <->  z  e.  ~P Z ) )
44 breq1 4656 . . . . . . . . . . . . . 14  |-  ( [ w ]  .~  =  z  ->  ( [ w ]  .~  ~~  1o  <->  z  ~~  1o ) )
4543, 44imbi12d 334 . . . . . . . . . . . . 13  |-  ( [ w ]  .~  =  z  ->  ( ( [ w ]  .~  C_  Z  ->  [ w ]  .~  ~~  1o )  <->  ( z  e.  ~P Z  ->  z  ~~  1o ) ) )
4621adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  Y )  ->  .~  Er  Y )
47 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  Y )  ->  w  e.  Y )
4846, 47erref 7762 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  Y )  ->  w  .~  w )
49 vex 3203 . . . . . . . . . . . . . . . . 17  |-  w  e. 
_V
5049, 49elec 7786 . . . . . . . . . . . . . . . 16  |-  ( w  e.  [ w ]  .~ 
<->  w  .~  w )
5148, 50sylibr 224 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  Y )  ->  w  e.  [ w ]  .~  )
52 ssel 3597 . . . . . . . . . . . . . . 15  |-  ( [ w ]  .~  C_  Z  ->  ( w  e.  [
w ]  .~  ->  w  e.  Z ) )
5351, 52syl5com 31 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  Y )  ->  ( [ w ]  .~  C_  Z  ->  w  e.  Z ) )
541, 2, 3, 4, 5, 6, 7sylow2alem1 18032 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  Z )  ->  [ w ]  .~  =  { w } )
5549ensn1 8020 . . . . . . . . . . . . . . . . 17  |-  { w }  ~~  1o
5654, 55syl6eqbr 4692 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  Z )  ->  [ w ]  .~  ~~  1o )
5756ex 450 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( w  e.  Z  ->  [ w ]  .~  ~~  1o ) )
5857adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  Y )  ->  (
w  e.  Z  ->  [ w ]  .~  ~~  1o ) )
5953, 58syld 47 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  Y )  ->  ( [ w ]  .~  C_  Z  ->  [ w ]  .~  ~~  1o ) )
6040, 45, 59ectocld 7814 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  ( z  e.  ~P Z  ->  z  ~~  1o ) )
6160impr 649 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  ( Y /.  .~  )  /\  z  e.  ~P Z ) )  -> 
z  ~~  1o )
6239, 61sylan2b 492 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) )  ->  z  ~~  1o )
63 en1b 8024 . . . . . . . . . 10  |-  ( z 
~~  1o  <->  z  =  { U. z } )
6462, 63sylib 208 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) )  ->  z  =  { U. z } )
6564fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) )  ->  ( # `
 z )  =  ( # `  { U. z } ) )
66 vuniex 6954 . . . . . . . . 9  |-  U. z  e.  _V
67 hashsng 13159 . . . . . . . . 9  |-  ( U. z  e.  _V  ->  (
# `  { U. z } )  =  1 )
6866, 67ax-mp 5 . . . . . . . 8  |-  ( # `  { U. z } )  =  1
6965, 68syl6eq 2672 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) )  ->  ( # `
 z )  =  1 )
7069sumeq2dv 14433 . . . . . 6  |-  ( ph  -> 
sum_ z  e.  ( ( Y /.  .~  )  i^i  ~P Z ) ( # `  z
)  =  sum_ z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) 1 )
71 ssrab2 3687 . . . . . . . . . . . 12  |-  { u  e.  Y  |  A. h  e.  X  (
h  .(+)  u )  =  u }  C_  Y
726, 71eqsstri 3635 . . . . . . . . . . 11  |-  Z  C_  Y
73 ssfi 8180 . . . . . . . . . . 11  |-  ( ( Y  e.  Fin  /\  Z  C_  Y )  ->  Z  e.  Fin )
745, 72, 73sylancl 694 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  Fin )
75 hashcl 13147 . . . . . . . . . 10  |-  ( Z  e.  Fin  ->  ( # `
 Z )  e. 
NN0 )
7674, 75syl 17 . . . . . . . . 9  |-  ( ph  ->  ( # `  Z
)  e.  NN0 )
7776nn0cnd 11353 . . . . . . . 8  |-  ( ph  ->  ( # `  Z
)  e.  CC )
7877mulid1d 10057 . . . . . . 7  |-  ( ph  ->  ( ( # `  Z
)  x.  1 )  =  ( # `  Z
) )
796, 5rabexd 4814 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  _V )
80 inss2 3834 . . . . . . . . . . 11  |-  ( ( Y /.  .~  )  i^i  ~P Z )  C_  ~P Z
81 pwexg 4850 . . . . . . . . . . . 12  |-  ( Z  e.  Fin  ->  ~P Z  e.  _V )
8274, 81syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ~P Z  e.  _V )
83 ssexg 4804 . . . . . . . . . . 11  |-  ( ( ( ( Y /.  .~  )  i^i  ~P Z
)  C_  ~P Z  /\  ~P Z  e.  _V )  ->  ( ( Y /.  .~  )  i^i 
~P Z )  e. 
_V )
8480, 82, 83sylancr 695 . . . . . . . . . 10  |-  ( ph  ->  ( ( Y /.  .~  )  i^i  ~P Z
)  e.  _V )
857relopabi 5245 . . . . . . . . . . . . . . . . 17  |-  Rel  .~
86 relssdmrn 5656 . . . . . . . . . . . . . . . . 17  |-  ( Rel 
.~  ->  .~  C_  ( dom 
.~  X.  ran  .~  )
)
8785, 86ax-mp 5 . . . . . . . . . . . . . . . 16  |-  .~  C_  ( dom  .~  X.  ran  .~  )
88 erdm 7752 . . . . . . . . . . . . . . . . . . 19  |-  (  .~  Er  Y  ->  dom  .~  =  Y )
8921, 88syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  .~  =  Y )
9089, 5eqeltrd 2701 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  .~  e.  Fin )
91 errn 7764 . . . . . . . . . . . . . . . . . . 19  |-  (  .~  Er  Y  ->  ran  .~  =  Y )
9221, 91syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ran  .~  =  Y )
9392, 5eqeltrd 2701 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ran  .~  e.  Fin )
94 xpexg 6960 . . . . . . . . . . . . . . . . 17  |-  ( ( dom  .~  e.  Fin  /\ 
ran  .~  e.  Fin )  ->  ( dom  .~  X.  ran  .~  )  e. 
_V )
9590, 93, 94syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( dom  .~  X.  ran  .~  )  e.  _V )
96 ssexg 4804 . . . . . . . . . . . . . . . 16  |-  ( (  .~  C_  ( dom  .~ 
X.  ran  .~  )  /\  ( dom  .~  X.  ran  .~  )  e.  _V )  ->  .~  e.  _V )
9787, 95, 96sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ph  ->  .~  e.  _V )
9897adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  Z )  ->  .~  e.  _V )
99 simpr 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  Z )  ->  w  e.  Z )
10072, 99sseldi 3601 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  Z )  ->  w  e.  Y )
101 ecelqsg 7802 . . . . . . . . . . . . . 14  |-  ( (  .~  e.  _V  /\  w  e.  Y )  ->  [ w ]  .~  e.  ( Y /.  .~  ) )
10298, 100, 101syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  Z )  ->  [ w ]  .~  e.  ( Y /.  .~  ) )
10354, 102eqeltrrd 2702 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  Z )  ->  { w }  e.  ( Y /.  .~  ) )
104 snelpwi 4912 . . . . . . . . . . . . 13  |-  ( w  e.  Z  ->  { w }  e.  ~P Z
)
105104adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  Z )  ->  { w }  e.  ~P Z
)
106103, 105elind 3798 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  Z )  ->  { w }  e.  ( ( Y /.  .~  )  i^i 
~P Z ) )
107106ex 450 . . . . . . . . . 10  |-  ( ph  ->  ( w  e.  Z  ->  { w }  e.  ( ( Y /.  .~  )  i^i  ~P Z
) ) )
108 simpr 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) )  ->  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) )
10980, 108sseldi 3601 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) )  ->  z  e.  ~P Z )
110109elpwid 4170 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) )  ->  z  C_  Z )
11164, 110eqsstr3d 3640 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) )  ->  { U. z }  C_  Z )
11266snss 4316 . . . . . . . . . . . 12  |-  ( U. z  e.  Z  <->  { U. z }  C_  Z )
113111, 112sylibr 224 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) )  ->  U. z  e.  Z )
114113ex 450 . . . . . . . . . 10  |-  ( ph  ->  ( z  e.  ( ( Y /.  .~  )  i^i  ~P Z )  ->  U. z  e.  Z
) )
115 sneq 4187 . . . . . . . . . . . . . . 15  |-  ( w  =  U. z  ->  { w }  =  { U. z } )
116115eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( w  =  U. z  -> 
( z  =  {
w }  <->  z  =  { U. z } ) )
11764, 116syl5ibrcom 237 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) )  ->  (
w  =  U. z  ->  z  =  { w } ) )
118117adantrl 752 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  Z  /\  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) ) )  -> 
( w  =  U. z  ->  z  =  {
w } ) )
119 unieq 4444 . . . . . . . . . . . . 13  |-  ( z  =  { w }  ->  U. z  =  U. { w } )
12049unisn 4451 . . . . . . . . . . . . 13  |-  U. {
w }  =  w
121119, 120syl6req 2673 . . . . . . . . . . . 12  |-  ( z  =  { w }  ->  w  =  U. z
)
122118, 121impbid1 215 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w  e.  Z  /\  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) ) )  -> 
( w  =  U. z 
<->  z  =  { w } ) )
123122ex 450 . . . . . . . . . 10  |-  ( ph  ->  ( ( w  e.  Z  /\  z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) )  ->  (
w  =  U. z  <->  z  =  { w }
) ) )
12479, 84, 107, 114, 123en3d 7992 . . . . . . . . 9  |-  ( ph  ->  Z  ~~  ( ( Y /.  .~  )  i^i  ~P Z ) )
125 hashen 13135 . . . . . . . . . 10  |-  ( ( Z  e.  Fin  /\  ( ( Y /.  .~  )  i^i  ~P Z
)  e.  Fin )  ->  ( ( # `  Z
)  =  ( # `  ( ( Y /.  .~  )  i^i  ~P Z
) )  <->  Z  ~~  ( ( Y /.  .~  )  i^i  ~P Z
) ) )
12674, 35, 125syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  Z
)  =  ( # `  ( ( Y /.  .~  )  i^i  ~P Z
) )  <->  Z  ~~  ( ( Y /.  .~  )  i^i  ~P Z
) ) )
127124, 126mpbird 247 . . . . . . . 8  |-  ( ph  ->  ( # `  Z
)  =  ( # `  ( ( Y /.  .~  )  i^i  ~P Z
) ) )
128127oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( # `  Z
)  x.  1 )  =  ( ( # `  ( ( Y /.  .~  )  i^i  ~P Z
) )  x.  1 ) )
12978, 128eqtr3d 2658 . . . . . 6  |-  ( ph  ->  ( # `  Z
)  =  ( (
# `  ( ( Y /.  .~  )  i^i 
~P Z ) )  x.  1 ) )
13038, 70, 1293eqtr4rd 2667 . . . . 5  |-  ( ph  ->  ( # `  Z
)  =  sum_ z  e.  ( ( Y /.  .~  )  i^i  ~P Z
) ( # `  z
) )
131130oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( # `  Z
)  +  sum_ z  e.  ( ( Y /.  .~  )  \  ~P Z
) ( # `  z
) )  =  (
sum_ z  e.  ( ( Y /.  .~  )  i^i  ~P Z ) ( # `  z
)  +  sum_ z  e.  ( ( Y /.  .~  )  \  ~P Z
) ( # `  z
) ) )
13231, 32, 1313eqtr4rd 2667 . . 3  |-  ( ph  ->  ( ( # `  Z
)  +  sum_ z  e.  ( ( Y /.  .~  )  \  ~P Z
) ( # `  z
) )  =  (
# `  Y )
)
133 hashcl 13147 . . . . . 6  |-  ( Y  e.  Fin  ->  ( # `
 Y )  e. 
NN0 )
1345, 133syl 17 . . . . 5  |-  ( ph  ->  ( # `  Y
)  e.  NN0 )
135134nn0cnd 11353 . . . 4  |-  ( ph  ->  ( # `  Y
)  e.  CC )
136 diffi 8192 . . . . . 6  |-  ( ( Y /.  .~  )  e.  Fin  ->  ( ( Y /.  .~  )  \  ~P Z )  e.  Fin )
13723, 136syl 17 . . . . 5  |-  ( ph  ->  ( ( Y /.  .~  )  \  ~P Z
)  e.  Fin )
138 eldifi 3732 . . . . . 6  |-  ( z  e.  ( ( Y /.  .~  )  \  ~P Z )  ->  z  e.  ( Y /.  .~  ) )
139138, 30sylan2 491 . . . . 5  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  \  ~P Z
) )  ->  ( # `
 z )  e.  CC )
140137, 139fsumcl 14464 . . . 4  |-  ( ph  -> 
sum_ z  e.  ( ( Y /.  .~  )  \  ~P Z ) ( # `  z
)  e.  CC )
141135, 77, 140subaddd 10410 . . 3  |-  ( ph  ->  ( ( ( # `  Y )  -  ( # `
 Z ) )  =  sum_ z  e.  ( ( Y /.  .~  )  \  ~P Z ) ( # `  z
)  <->  ( ( # `  Z )  +  sum_ z  e.  ( ( Y /.  .~  )  \  ~P Z ) ( # `  z ) )  =  ( # `  Y
) ) )
142132, 141mpbird 247 . 2  |-  ( ph  ->  ( ( # `  Y
)  -  ( # `  Z ) )  = 
sum_ z  e.  ( ( Y /.  .~  )  \  ~P Z ) ( # `  z
) )
1438, 142breqtrrd 4681 1  |-  ( ph  ->  P  ||  ( (
# `  Y )  -  ( # `  Z
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   U.cuni 4436   class class class wbr 4653   {copab 4712    X. cxp 5112   dom cdm 5114   ran crn 5115   Rel wrel 5119   ` cfv 5888  (class class class)co 6650   1oc1o 7553    Er wer 7739   [cec 7740   /.cqs 7741    ~~ cen 7952   Fincfn 7955   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   NN0cn0 11292   #chash 13117   sum_csu 14416    || cdvds 14983   Basecbs 15857    GrpAct cga 17722   pGrp cpgp 17946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-ga 17723  df-od 17948  df-pgp 17950
This theorem is referenced by:  sylow2blem3  18037  sylow3lem6  18047
  Copyright terms: Public domain W3C validator