Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopltp Structured version   Visualization version   Unicode version

Theorem tendopltp 36068
Description: Trace-preserving property of endomorphism sum operation  P, based on theorem trlco 36015. Part of remark in [Crawley] p. 118, 2nd line, "it is clear from the second part of G (our trlco 36015) that Delta is a subring of E." (In our development, we will bypass their E and go directly to their Delta, whose base set is our  ( TEndo `  K
) `  W.) (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h  |-  H  =  ( LHyp `  K
)
tendopl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendopl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendopl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
tendopltp.l  |-  .<_  =  ( le `  K )
tendopltp.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
tendopltp  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( ( U P V ) `  F ) )  .<_  ( R `  F ) )
Distinct variable groups:    t, s, E    f, s, t, T   
f, W, s, t
Allowed substitution hints:    P( t, f, s)    R( t, f, s)    U( t, f, s)    E( f)    F( t, f, s)    H( t, f, s)    K( t, f, s)    .<_ ( t, f, s)    V( t, f, s)

Proof of Theorem tendopltp
StepHypRef Expression
1 eqid 2622 . 2  |-  ( Base `  K )  =  (
Base `  K )
2 tendopltp.l . 2  |-  .<_  =  ( le `  K )
3 simp1l 1085 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  K  e.  HL )
4 hllat 34650 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 17 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  K  e.  Lat )
6 simp1 1061 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 tendopl.h . . . 4  |-  H  =  ( LHyp `  K
)
8 tendopl.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
9 tendopl.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
10 tendopl.p . . . 4  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
117, 8, 9, 10tendoplcl2 36066 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( U P V ) `  F )  e.  T )
12 tendopltp.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
131, 7, 8, 12trlcl 35451 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( U P V ) `  F )  e.  T
)  ->  ( R `  ( ( U P V ) `  F
) )  e.  (
Base `  K )
)
146, 11, 13syl2anc 693 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( ( U P V ) `  F ) )  e.  ( Base `  K
) )
157, 8, 9tendocl 36055 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  F  e.  T
)  ->  ( U `  F )  e.  T
)
16153adant2r 1321 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( U `  F )  e.  T )
171, 7, 8, 12trlcl 35451 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  F )  e.  T
)  ->  ( R `  ( U `  F
) )  e.  (
Base `  K )
)
186, 16, 17syl2anc 693 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( U `  F ) )  e.  ( Base `  K
) )
197, 8, 9tendocl 36055 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  F  e.  T
)  ->  ( V `  F )  e.  T
)
20193adant2l 1320 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( V `  F )  e.  T )
211, 7, 8, 12trlcl 35451 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( V `  F )  e.  T
)  ->  ( R `  ( V `  F
) )  e.  (
Base `  K )
)
226, 20, 21syl2anc 693 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( V `  F ) )  e.  ( Base `  K
) )
23 eqid 2622 . . . 4  |-  ( join `  K )  =  (
join `  K )
241, 23latjcl 17051 . . 3  |-  ( ( K  e.  Lat  /\  ( R `  ( U `
 F ) )  e.  ( Base `  K
)  /\  ( R `  ( V `  F
) )  e.  (
Base `  K )
)  ->  ( ( R `  ( U `  F ) ) (
join `  K )
( R `  ( V `  F )
) )  e.  (
Base `  K )
)
255, 18, 22, 24syl3anc 1326 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( R `  ( U `  F )
) ( join `  K
) ( R `  ( V `  F ) ) )  e.  (
Base `  K )
)
26 simp3 1063 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  F  e.  T )
271, 7, 8, 12trlcl 35451 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
286, 26, 27syl2anc 693 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  F )  e.  ( Base `  K
) )
29 simp2l 1087 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  U  e.  E )
30 simp2r 1088 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  V  e.  E )
3110, 8tendopl2 36065 . . . . 5  |-  ( ( U  e.  E  /\  V  e.  E  /\  F  e.  T )  ->  ( ( U P V ) `  F
)  =  ( ( U `  F )  o.  ( V `  F ) ) )
3229, 30, 26, 31syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( U P V ) `  F )  =  ( ( U `
 F )  o.  ( V `  F
) ) )
3332fveq2d 6195 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( ( U P V ) `  F ) )  =  ( R `  (
( U `  F
)  o.  ( V `
 F ) ) ) )
342, 23, 7, 8, 12trlco 36015 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  F )  e.  T  /\  ( V `  F
)  e.  T )  ->  ( R `  ( ( U `  F )  o.  ( V `  F )
) )  .<_  ( ( R `  ( U `
 F ) ) ( join `  K
) ( R `  ( V `  F ) ) ) )
356, 16, 20, 34syl3anc 1326 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( ( U `  F )  o.  ( V `  F
) ) )  .<_  ( ( R `  ( U `  F ) ) ( join `  K
) ( R `  ( V `  F ) ) ) )
3633, 35eqbrtrd 4675 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( ( U P V ) `  F ) )  .<_  ( ( R `  ( U `  F ) ) ( join `  K
) ( R `  ( V `  F ) ) ) )
372, 7, 8, 12, 9tendotp 36049 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  F  e.  T
)  ->  ( R `  ( U `  F
) )  .<_  ( R `
 F ) )
38373adant2r 1321 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( U `  F ) )  .<_  ( R `  F ) )
392, 7, 8, 12, 9tendotp 36049 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  F  e.  T
)  ->  ( R `  ( V `  F
) )  .<_  ( R `
 F ) )
40393adant2l 1320 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( V `  F ) )  .<_  ( R `  F ) )
411, 2, 23latjle12 17062 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( R `  ( U `  F ) )  e.  ( Base `  K )  /\  ( R `  ( V `  F ) )  e.  ( Base `  K
)  /\  ( R `  F )  e.  (
Base `  K )
) )  ->  (
( ( R `  ( U `  F ) )  .<_  ( R `  F )  /\  ( R `  ( V `  F ) )  .<_  ( R `  F ) )  <->  ( ( R `
 ( U `  F ) ) (
join `  K )
( R `  ( V `  F )
) )  .<_  ( R `
 F ) ) )
425, 18, 22, 28, 41syl13anc 1328 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( ( R `  ( U `  F ) )  .<_  ( R `  F )  /\  ( R `  ( V `  F ) )  .<_  ( R `  F ) )  <->  ( ( R `
 ( U `  F ) ) (
join `  K )
( R `  ( V `  F )
) )  .<_  ( R `
 F ) ) )
4338, 40, 42mpbi2and 956 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( R `  ( U `  F )
) ( join `  K
) ( R `  ( V `  F ) ) )  .<_  ( R `
 F ) )
441, 2, 5, 14, 25, 28, 36, 43lattrd 17058 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( ( U P V ) `  F ) )  .<_  ( R `  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653    |-> cmpt 4729    o. ccom 5118   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   lecple 15948   joincjn 16944   Latclat 17045   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445   TEndoctendo 36040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043
This theorem is referenced by:  tendoplcl  36069
  Copyright terms: Public domain W3C validator