MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colmid Structured version   Visualization version   Unicode version

Theorem colmid 25583
Description: Colinearity and equidistance implies midpoint. Theorem 7.20 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p  |-  P  =  ( Base `  G
)
mirval.d  |-  .-  =  ( dist `  G )
mirval.i  |-  I  =  (Itv `  G )
mirval.l  |-  L  =  (LineG `  G )
mirval.s  |-  S  =  (pInvG `  G )
mirval.g  |-  ( ph  ->  G  e. TarskiG )
colmid.m  |-  M  =  ( S `  X
)
colmid.a  |-  ( ph  ->  A  e.  P )
colmid.b  |-  ( ph  ->  B  e.  P )
colmid.x  |-  ( ph  ->  X  e.  P )
colmid.c  |-  ( ph  ->  ( X  e.  ( A L B )  \/  A  =  B ) )
colmid.d  |-  ( ph  ->  ( X  .-  A
)  =  ( X 
.-  B ) )
Assertion
Ref Expression
colmid  |-  ( ph  ->  ( B  =  ( M `  A )  \/  A  =  B ) )

Proof of Theorem colmid
StepHypRef Expression
1 simpr 477 . . 3  |-  ( (
ph  /\  A  =  B )  ->  A  =  B )
21olcd 408 . 2  |-  ( (
ph  /\  A  =  B )  ->  ( B  =  ( M `  A )  \/  A  =  B ) )
3 mirval.p . . . . 5  |-  P  =  ( Base `  G
)
4 mirval.d . . . . 5  |-  .-  =  ( dist `  G )
5 mirval.i . . . . 5  |-  I  =  (Itv `  G )
6 mirval.l . . . . 5  |-  L  =  (LineG `  G )
7 mirval.s . . . . 5  |-  S  =  (pInvG `  G )
8 mirval.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
98ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  A  =/=  B )  /\  X  e.  ( A I B ) )  ->  G  e. TarskiG )
10 colmid.x . . . . . 6  |-  ( ph  ->  X  e.  P )
1110ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  A  =/=  B )  /\  X  e.  ( A I B ) )  ->  X  e.  P )
12 colmid.m . . . . 5  |-  M  =  ( S `  X
)
13 colmid.a . . . . . 6  |-  ( ph  ->  A  e.  P )
1413ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  A  =/=  B )  /\  X  e.  ( A I B ) )  ->  A  e.  P )
15 colmid.b . . . . . 6  |-  ( ph  ->  B  e.  P )
1615ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  A  =/=  B )  /\  X  e.  ( A I B ) )  ->  B  e.  P )
17 colmid.d . . . . . . 7  |-  ( ph  ->  ( X  .-  A
)  =  ( X 
.-  B ) )
1817ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  B )  /\  X  e.  ( A I B ) )  ->  ( X  .-  A )  =  ( X  .-  B
) )
1918eqcomd 2628 . . . . 5  |-  ( ( ( ph  /\  A  =/=  B )  /\  X  e.  ( A I B ) )  ->  ( X  .-  B )  =  ( X  .-  A
) )
20 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  B )  /\  X  e.  ( A I B ) )  ->  X  e.  ( A I B ) )
213, 4, 5, 9, 14, 11, 16, 20tgbtwncom 25383 . . . . 5  |-  ( ( ( ph  /\  A  =/=  B )  /\  X  e.  ( A I B ) )  ->  X  e.  ( B I A ) )
223, 4, 5, 6, 7, 9, 11, 12, 14, 16, 19, 21ismir 25554 . . . 4  |-  ( ( ( ph  /\  A  =/=  B )  /\  X  e.  ( A I B ) )  ->  B  =  ( M `  A ) )
2322orcd 407 . . 3  |-  ( ( ( ph  /\  A  =/=  B )  /\  X  e.  ( A I B ) )  ->  ( B  =  ( M `  A )  \/  A  =  B ) )
248adantr 481 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( X I B ) )  ->  G  e. TarskiG )
2515adantr 481 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( X I B ) )  ->  B  e.  P )
2613adantr 481 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( X I B ) )  ->  A  e.  P )
2710adantr 481 . . . . . . . 8  |-  ( (
ph  /\  A  e.  ( X I B ) )  ->  X  e.  P )
28 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  ( X I B ) )  ->  A  e.  ( X I B ) )
293, 4, 5, 24, 27, 26, 25, 28tgbtwncom 25383 . . . . . . . 8  |-  ( (
ph  /\  A  e.  ( X I B ) )  ->  A  e.  ( B I X ) )
303, 4, 5, 24, 26, 27tgbtwntriv1 25386 . . . . . . . 8  |-  ( (
ph  /\  A  e.  ( X I B ) )  ->  A  e.  ( A I X ) )
313, 4, 5, 8, 10, 13, 10, 15, 17tgcgrcomlr 25375 . . . . . . . . . 10  |-  ( ph  ->  ( A  .-  X
)  =  ( B 
.-  X ) )
3231adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  ( X I B ) )  ->  ( A  .-  X )  =  ( B  .-  X ) )
3332eqcomd 2628 . . . . . . . 8  |-  ( (
ph  /\  A  e.  ( X I B ) )  ->  ( B  .-  X )  =  ( A  .-  X ) )
34 eqidd 2623 . . . . . . . 8  |-  ( (
ph  /\  A  e.  ( X I B ) )  ->  ( A  .-  X )  =  ( A  .-  X ) )
353, 4, 5, 24, 25, 26, 27, 26, 26, 27, 29, 30, 33, 34tgcgrsub 25404 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( X I B ) )  ->  ( B  .-  A )  =  ( A  .-  A ) )
363, 4, 5, 24, 25, 26, 26, 35axtgcgrid 25362 . . . . . 6  |-  ( (
ph  /\  A  e.  ( X I B ) )  ->  B  =  A )
3736eqcomd 2628 . . . . 5  |-  ( (
ph  /\  A  e.  ( X I B ) )  ->  A  =  B )
3837adantlr 751 . . . 4  |-  ( ( ( ph  /\  A  =/=  B )  /\  A  e.  ( X I B ) )  ->  A  =  B )
3938olcd 408 . . 3  |-  ( ( ( ph  /\  A  =/=  B )  /\  A  e.  ( X I B ) )  ->  ( B  =  ( M `  A )  \/  A  =  B ) )
408adantr 481 . . . . . 6  |-  ( (
ph  /\  B  e.  ( A I X ) )  ->  G  e. TarskiG )
4113adantr 481 . . . . . 6  |-  ( (
ph  /\  B  e.  ( A I X ) )  ->  A  e.  P )
4215adantr 481 . . . . . 6  |-  ( (
ph  /\  B  e.  ( A I X ) )  ->  B  e.  P )
4310adantr 481 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( A I X ) )  ->  X  e.  P )
44 simpr 477 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( A I X ) )  ->  B  e.  ( A I X ) )
453, 4, 5, 40, 42, 43tgbtwntriv1 25386 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( A I X ) )  ->  B  e.  ( B I X ) )
4631adantr 481 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( A I X ) )  ->  ( A  .-  X )  =  ( B  .-  X ) )
47 eqidd 2623 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( A I X ) )  ->  ( B  .-  X )  =  ( B  .-  X ) )
483, 4, 5, 40, 41, 42, 43, 42, 42, 43, 44, 45, 46, 47tgcgrsub 25404 . . . . . 6  |-  ( (
ph  /\  B  e.  ( A I X ) )  ->  ( A  .-  B )  =  ( B  .-  B ) )
493, 4, 5, 40, 41, 42, 42, 48axtgcgrid 25362 . . . . 5  |-  ( (
ph  /\  B  e.  ( A I X ) )  ->  A  =  B )
5049adantlr 751 . . . 4  |-  ( ( ( ph  /\  A  =/=  B )  /\  B  e.  ( A I X ) )  ->  A  =  B )
5150olcd 408 . . 3  |-  ( ( ( ph  /\  A  =/=  B )  /\  B  e.  ( A I X ) )  ->  ( B  =  ( M `  A )  \/  A  =  B ) )
52 df-ne 2795 . . . . 5  |-  ( A  =/=  B  <->  -.  A  =  B )
53 colmid.c . . . . . . 7  |-  ( ph  ->  ( X  e.  ( A L B )  \/  A  =  B ) )
5453orcomd 403 . . . . . 6  |-  ( ph  ->  ( A  =  B  \/  X  e.  ( A L B ) ) )
5554orcanai 952 . . . . 5  |-  ( (
ph  /\  -.  A  =  B )  ->  X  e.  ( A L B ) )
5652, 55sylan2b 492 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  X  e.  ( A L B ) )
578adantr 481 . . . . 5  |-  ( (
ph  /\  A  =/=  B )  ->  G  e. TarskiG )
5813adantr 481 . . . . 5  |-  ( (
ph  /\  A  =/=  B )  ->  A  e.  P )
5915adantr 481 . . . . 5  |-  ( (
ph  /\  A  =/=  B )  ->  B  e.  P )
60 simpr 477 . . . . 5  |-  ( (
ph  /\  A  =/=  B )  ->  A  =/=  B )
6110adantr 481 . . . . 5  |-  ( (
ph  /\  A  =/=  B )  ->  X  e.  P )
623, 6, 5, 57, 58, 59, 60, 61tgellng 25448 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  ( X  e.  ( A L B )  <->  ( X  e.  ( A I B )  \/  A  e.  ( X I B )  \/  B  e.  ( A I X ) ) ) )
6356, 62mpbid 222 . . 3  |-  ( (
ph  /\  A  =/=  B )  ->  ( X  e.  ( A I B )  \/  A  e.  ( X I B )  \/  B  e.  ( A I X ) ) )
6423, 39, 51, 63mpjao3dan 1395 . 2  |-  ( (
ph  /\  A  =/=  B )  ->  ( B  =  ( M `  A )  \/  A  =  B ) )
652, 64pm2.61dane 2881 1  |-  ( ph  ->  ( B  =  ( M `  A )  \/  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-mir 25548
This theorem is referenced by:  symquadlem  25584  midexlem  25587
  Copyright terms: Public domain W3C validator