Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege131d Structured version   Visualization version   Unicode version

Theorem frege131d 38056
Description: If  F is a function and  A contains all elements of  U and all elements before or after those elements of  U in the transitive closure of  F, then the image under  F of  A is a subclass of  A. Similar to Proposition 131 of [Frege1879] p. 85. Compare with frege131 38288. (Contributed by RP, 17-Jul-2020.)
Hypotheses
Ref Expression
frege131d.f  |-  ( ph  ->  F  e.  _V )
frege131d.a  |-  ( ph  ->  A  =  ( U  u.  ( ( `' ( t+ `  F ) " U
)  u.  ( ( t+ `  F
) " U ) ) ) )
frege131d.fun  |-  ( ph  ->  Fun  F )
Assertion
Ref Expression
frege131d  |-  ( ph  ->  ( F " A
)  C_  A )

Proof of Theorem frege131d
StepHypRef Expression
1 frege131d.f . . . . 5  |-  ( ph  ->  F  e.  _V )
2 trclfvlb 13749 . . . . 5  |-  ( F  e.  _V  ->  F  C_  ( t+ `  F ) )
3 imass1 5500 . . . . 5  |-  ( F 
C_  ( t+ `  F )  -> 
( F " U
)  C_  ( (
t+ `  F
) " U ) )
41, 2, 33syl 18 . . . 4  |-  ( ph  ->  ( F " U
)  C_  ( (
t+ `  F
) " U ) )
5 ssun2 3777 . . . . 5  |-  ( ( t+ `  F
) " U ) 
C_  ( ( `' ( t+ `  F ) " U
)  u.  ( ( t+ `  F
) " U ) )
6 ssun2 3777 . . . . 5  |-  ( ( `' ( t+ `  F ) " U )  u.  (
( t+ `  F ) " U
) )  C_  ( U  u.  ( ( `' ( t+ `  F ) " U )  u.  (
( t+ `  F ) " U
) ) )
75, 6sstri 3612 . . . 4  |-  ( ( t+ `  F
) " U ) 
C_  ( U  u.  ( ( `' ( t+ `  F
) " U )  u.  ( ( t+ `  F )
" U ) ) )
84, 7syl6ss 3615 . . 3  |-  ( ph  ->  ( F " U
)  C_  ( U  u.  ( ( `' ( t+ `  F
) " U )  u.  ( ( t+ `  F )
" U ) ) ) )
9 trclfvdecomr 38020 . . . . . . . . . . . 12  |-  ( F  e.  _V  ->  (
t+ `  F
)  =  ( F  u.  ( ( t+ `  F )  o.  F ) ) )
101, 9syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( t+ `  F )  =  ( F  u.  ( ( t+ `  F
)  o.  F ) ) )
1110cnveqd 5298 . . . . . . . . . 10  |-  ( ph  ->  `' ( t+ `  F )  =  `' ( F  u.  ( ( t+ `  F )  o.  F ) ) )
12 cnvun 5538 . . . . . . . . . . 11  |-  `' ( F  u.  ( ( t+ `  F
)  o.  F ) )  =  ( `' F  u.  `' ( ( t+ `  F )  o.  F
) )
13 cnvco 5308 . . . . . . . . . . . 12  |-  `' ( ( t+ `  F )  o.  F
)  =  ( `' F  o.  `' ( t+ `  F
) )
1413uneq2i 3764 . . . . . . . . . . 11  |-  ( `' F  u.  `' ( ( t+ `  F )  o.  F
) )  =  ( `' F  u.  ( `' F  o.  `' ( t+ `  F ) ) )
1512, 14eqtri 2644 . . . . . . . . . 10  |-  `' ( F  u.  ( ( t+ `  F
)  o.  F ) )  =  ( `' F  u.  ( `' F  o.  `' ( t+ `  F
) ) )
1611, 15syl6eq 2672 . . . . . . . . 9  |-  ( ph  ->  `' ( t+ `  F )  =  ( `' F  u.  ( `' F  o.  `' ( t+ `  F ) ) ) )
1716coeq2d 5284 . . . . . . . 8  |-  ( ph  ->  ( F  o.  `' ( t+ `  F ) )  =  ( F  o.  ( `' F  u.  ( `' F  o.  `' ( t+ `  F ) ) ) ) )
18 coundi 5636 . . . . . . . . 9  |-  ( F  o.  ( `' F  u.  ( `' F  o.  `' ( t+ `  F ) ) ) )  =  ( ( F  o.  `' F )  u.  ( F  o.  ( `' F  o.  `' (
t+ `  F
) ) ) )
19 frege131d.fun . . . . . . . . . . 11  |-  ( ph  ->  Fun  F )
20 funcocnv2 6161 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )
2119, 20syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )
22 coass 5654 . . . . . . . . . . . 12  |-  ( ( F  o.  `' F
)  o.  `' ( t+ `  F
) )  =  ( F  o.  ( `' F  o.  `' ( t+ `  F
) ) )
2322eqcomi 2631 . . . . . . . . . . 11  |-  ( F  o.  ( `' F  o.  `' ( t+ `  F ) ) )  =  ( ( F  o.  `' F
)  o.  `' ( t+ `  F
) )
2421coeq1d 5283 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F  o.  `' F )  o.  `' ( t+ `  F ) )  =  ( (  _I  |`  ran  F
)  o.  `' ( t+ `  F
) ) )
2523, 24syl5eq 2668 . . . . . . . . . 10  |-  ( ph  ->  ( F  o.  ( `' F  o.  `' ( t+ `  F ) ) )  =  ( (  _I  |`  ran  F )  o.  `' ( t+ `  F ) ) )
2621, 25uneq12d 3768 . . . . . . . . 9  |-  ( ph  ->  ( ( F  o.  `' F )  u.  ( F  o.  ( `' F  o.  `' (
t+ `  F
) ) ) )  =  ( (  _I  |`  ran  F )  u.  ( (  _I  |`  ran  F
)  o.  `' ( t+ `  F
) ) ) )
2718, 26syl5eq 2668 . . . . . . . 8  |-  ( ph  ->  ( F  o.  ( `' F  u.  ( `' F  o.  `' ( t+ `  F ) ) ) )  =  ( (  _I  |`  ran  F )  u.  ( (  _I  |`  ran  F )  o.  `' ( t+ `  F ) ) ) )
2817, 27eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( F  o.  `' ( t+ `  F ) )  =  ( (  _I  |`  ran  F
)  u.  ( (  _I  |`  ran  F )  o.  `' ( t+ `  F ) ) ) )
2928imaeq1d 5465 . . . . . 6  |-  ( ph  ->  ( ( F  o.  `' ( t+ `  F ) )
" U )  =  ( ( (  _I  |`  ran  F )  u.  ( (  _I  |`  ran  F
)  o.  `' ( t+ `  F
) ) ) " U ) )
30 imaundir 5546 . . . . . 6  |-  ( ( (  _I  |`  ran  F
)  u.  ( (  _I  |`  ran  F )  o.  `' ( t+ `  F ) ) ) " U
)  =  ( ( (  _I  |`  ran  F
) " U )  u.  ( ( (  _I  |`  ran  F )  o.  `' ( t+ `  F ) ) " U ) )
3129, 30syl6eq 2672 . . . . 5  |-  ( ph  ->  ( ( F  o.  `' ( t+ `  F ) )
" U )  =  ( ( (  _I  |`  ran  F ) " U )  u.  (
( (  _I  |`  ran  F
)  o.  `' ( t+ `  F
) ) " U
) ) )
32 resss 5422 . . . . . . . . 9  |-  (  _I  |`  ran  F )  C_  _I
33 imass1 5500 . . . . . . . . 9  |-  ( (  _I  |`  ran  F ) 
C_  _I  ->  ( (  _I  |`  ran  F )
" U )  C_  (  _I  " U ) )
3432, 33ax-mp 5 . . . . . . . 8  |-  ( (  _I  |`  ran  F )
" U )  C_  (  _I  " U )
35 imai 5478 . . . . . . . 8  |-  (  _I  " U )  =  U
3634, 35sseqtri 3637 . . . . . . 7  |-  ( (  _I  |`  ran  F )
" U )  C_  U
37 imaco 5640 . . . . . . . 8  |-  ( ( (  _I  |`  ran  F
)  o.  `' ( t+ `  F
) ) " U
)  =  ( (  _I  |`  ran  F )
" ( `' ( t+ `  F
) " U ) )
38 imass1 5500 . . . . . . . . . 10  |-  ( (  _I  |`  ran  F ) 
C_  _I  ->  ( (  _I  |`  ran  F )
" ( `' ( t+ `  F
) " U ) )  C_  (  _I  " ( `' ( t+ `  F )
" U ) ) )
3932, 38ax-mp 5 . . . . . . . . 9  |-  ( (  _I  |`  ran  F )
" ( `' ( t+ `  F
) " U ) )  C_  (  _I  " ( `' ( t+ `  F )
" U ) )
40 imai 5478 . . . . . . . . 9  |-  (  _I  " ( `' ( t+ `  F
) " U ) )  =  ( `' ( t+ `  F ) " U
)
4139, 40sseqtri 3637 . . . . . . . 8  |-  ( (  _I  |`  ran  F )
" ( `' ( t+ `  F
) " U ) )  C_  ( `' ( t+ `  F ) " U
)
4237, 41eqsstri 3635 . . . . . . 7  |-  ( ( (  _I  |`  ran  F
)  o.  `' ( t+ `  F
) ) " U
)  C_  ( `' ( t+ `  F ) " U
)
43 unss12 3785 . . . . . . 7  |-  ( ( ( (  _I  |`  ran  F
) " U ) 
C_  U  /\  (
( (  _I  |`  ran  F
)  o.  `' ( t+ `  F
) ) " U
)  C_  ( `' ( t+ `  F ) " U
) )  ->  (
( (  _I  |`  ran  F
) " U )  u.  ( ( (  _I  |`  ran  F )  o.  `' ( t+ `  F ) ) " U ) )  C_  ( U  u.  ( `' ( t+ `  F )
" U ) ) )
4436, 42, 43mp2an 708 . . . . . 6  |-  ( ( (  _I  |`  ran  F
) " U )  u.  ( ( (  _I  |`  ran  F )  o.  `' ( t+ `  F ) ) " U ) )  C_  ( U  u.  ( `' ( t+ `  F )
" U ) )
45 ssun1 3776 . . . . . . 7  |-  ( U  u.  ( `' ( t+ `  F
) " U ) )  C_  ( ( U  u.  ( `' ( t+ `  F ) " U
) )  u.  (
( t+ `  F ) " U
) )
46 unass 3770 . . . . . . 7  |-  ( ( U  u.  ( `' ( t+ `  F ) " U
) )  u.  (
( t+ `  F ) " U
) )  =  ( U  u.  ( ( `' ( t+ `  F ) " U )  u.  (
( t+ `  F ) " U
) ) )
4745, 46sseqtri 3637 . . . . . 6  |-  ( U  u.  ( `' ( t+ `  F
) " U ) )  C_  ( U  u.  ( ( `' ( t+ `  F
) " U )  u.  ( ( t+ `  F )
" U ) ) )
4844, 47sstri 3612 . . . . 5  |-  ( ( (  _I  |`  ran  F
) " U )  u.  ( ( (  _I  |`  ran  F )  o.  `' ( t+ `  F ) ) " U ) )  C_  ( U  u.  ( ( `' ( t+ `  F
) " U )  u.  ( ( t+ `  F )
" U ) ) )
4931, 48syl6eqss 3655 . . . 4  |-  ( ph  ->  ( ( F  o.  `' ( t+ `  F ) )
" U )  C_  ( U  u.  (
( `' ( t+ `  F )
" U )  u.  ( ( t+ `  F ) " U ) ) ) )
50 coss1 5277 . . . . . . . 8  |-  ( F 
C_  ( t+ `  F )  -> 
( F  o.  (
t+ `  F
) )  C_  (
( t+ `  F )  o.  (
t+ `  F
) ) )
511, 2, 503syl 18 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
t+ `  F
) )  C_  (
( t+ `  F )  o.  (
t+ `  F
) ) )
52 trclfvcotrg 13757 . . . . . . 7  |-  ( ( t+ `  F
)  o.  ( t+ `  F ) )  C_  ( t+ `  F )
5351, 52syl6ss 3615 . . . . . 6  |-  ( ph  ->  ( F  o.  (
t+ `  F
) )  C_  (
t+ `  F
) )
54 imass1 5500 . . . . . 6  |-  ( ( F  o.  ( t+ `  F ) )  C_  ( t+ `  F )  ->  ( ( F  o.  ( t+ `  F ) )
" U )  C_  ( ( t+ `  F ) " U ) )
5553, 54syl 17 . . . . 5  |-  ( ph  ->  ( ( F  o.  ( t+ `  F ) ) " U )  C_  (
( t+ `  F ) " U
) )
5655, 7syl6ss 3615 . . . 4  |-  ( ph  ->  ( ( F  o.  ( t+ `  F ) ) " U )  C_  ( U  u.  ( ( `' ( t+ `  F ) " U )  u.  (
( t+ `  F ) " U
) ) ) )
5749, 56unssd 3789 . . 3  |-  ( ph  ->  ( ( ( F  o.  `' ( t+ `  F ) ) " U )  u.  ( ( F  o.  ( t+ `  F ) )
" U ) ) 
C_  ( U  u.  ( ( `' ( t+ `  F
) " U )  u.  ( ( t+ `  F )
" U ) ) ) )
588, 57unssd 3789 . 2  |-  ( ph  ->  ( ( F " U )  u.  (
( ( F  o.  `' ( t+ `  F ) )
" U )  u.  ( ( F  o.  ( t+ `  F ) ) " U ) ) ) 
C_  ( U  u.  ( ( `' ( t+ `  F
) " U )  u.  ( ( t+ `  F )
" U ) ) ) )
59 frege131d.a . . . 4  |-  ( ph  ->  A  =  ( U  u.  ( ( `' ( t+ `  F ) " U
)  u.  ( ( t+ `  F
) " U ) ) ) )
6059imaeq2d 5466 . . 3  |-  ( ph  ->  ( F " A
)  =  ( F
" ( U  u.  ( ( `' ( t+ `  F
) " U )  u.  ( ( t+ `  F )
" U ) ) ) ) )
61 imaundi 5545 . . . 4  |-  ( F
" ( U  u.  ( ( `' ( t+ `  F
) " U )  u.  ( ( t+ `  F )
" U ) ) ) )  =  ( ( F " U
)  u.  ( F
" ( ( `' ( t+ `  F ) " U
)  u.  ( ( t+ `  F
) " U ) ) ) )
62 imaundi 5545 . . . . . 6  |-  ( F
" ( ( `' ( t+ `  F ) " U
)  u.  ( ( t+ `  F
) " U ) ) )  =  ( ( F " ( `' ( t+ `  F ) " U ) )  u.  ( F " (
( t+ `  F ) " U
) ) )
63 imaco 5640 . . . . . . . 8  |-  ( ( F  o.  `' ( t+ `  F
) ) " U
)  =  ( F
" ( `' ( t+ `  F
) " U ) )
6463eqcomi 2631 . . . . . . 7  |-  ( F
" ( `' ( t+ `  F
) " U ) )  =  ( ( F  o.  `' ( t+ `  F
) ) " U
)
65 imaco 5640 . . . . . . . 8  |-  ( ( F  o.  ( t+ `  F ) ) " U )  =  ( F "
( ( t+ `  F ) " U ) )
6665eqcomi 2631 . . . . . . 7  |-  ( F
" ( ( t+ `  F )
" U ) )  =  ( ( F  o.  ( t+ `  F ) )
" U )
6764, 66uneq12i 3765 . . . . . 6  |-  ( ( F " ( `' ( t+ `  F ) " U
) )  u.  ( F " ( ( t+ `  F )
" U ) ) )  =  ( ( ( F  o.  `' ( t+ `  F ) ) " U )  u.  (
( F  o.  (
t+ `  F
) ) " U
) )
6862, 67eqtri 2644 . . . . 5  |-  ( F
" ( ( `' ( t+ `  F ) " U
)  u.  ( ( t+ `  F
) " U ) ) )  =  ( ( ( F  o.  `' ( t+ `  F ) )
" U )  u.  ( ( F  o.  ( t+ `  F ) ) " U ) )
6968uneq2i 3764 . . . 4  |-  ( ( F " U )  u.  ( F "
( ( `' ( t+ `  F
) " U )  u.  ( ( t+ `  F )
" U ) ) ) )  =  ( ( F " U
)  u.  ( ( ( F  o.  `' ( t+ `  F ) ) " U )  u.  (
( F  o.  (
t+ `  F
) ) " U
) ) )
7061, 69eqtri 2644 . . 3  |-  ( F
" ( U  u.  ( ( `' ( t+ `  F
) " U )  u.  ( ( t+ `  F )
" U ) ) ) )  =  ( ( F " U
)  u.  ( ( ( F  o.  `' ( t+ `  F ) ) " U )  u.  (
( F  o.  (
t+ `  F
) ) " U
) ) )
7160, 70syl6eq 2672 . 2  |-  ( ph  ->  ( F " A
)  =  ( ( F " U )  u.  ( ( ( F  o.  `' ( t+ `  F
) ) " U
)  u.  ( ( F  o.  ( t+ `  F ) ) " U ) ) ) )
7258, 71, 593sstr4d 3648 1  |-  ( ph  ->  ( F " A
)  C_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574    _I cid 5023   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Fun wfun 5882   ` cfv 5888   t+ctcl 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-trcl 13726  df-relexp 13761
This theorem is referenced by:  frege133d  38057
  Copyright terms: Public domain W3C validator