| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txhmeo | Structured version Visualization version Unicode version | ||
| Description: Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| txhmeo.1 |
|
| txhmeo.2 |
|
| txhmeo.3 |
|
| txhmeo.4 |
|
| Ref | Expression |
|---|---|
| txhmeo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txhmeo.3 |
. . . . . 6
| |
| 2 | hmeocn 21563 |
. . . . . 6
| |
| 3 | 1, 2 | syl 17 |
. . . . 5
|
| 4 | cntop1 21044 |
. . . . 5
| |
| 5 | 3, 4 | syl 17 |
. . . 4
|
| 6 | txhmeo.1 |
. . . . 5
| |
| 7 | 6 | toptopon 20722 |
. . . 4
|
| 8 | 5, 7 | sylib 208 |
. . 3
|
| 9 | txhmeo.4 |
. . . . . 6
| |
| 10 | hmeocn 21563 |
. . . . . 6
| |
| 11 | 9, 10 | syl 17 |
. . . . 5
|
| 12 | cntop1 21044 |
. . . . 5
| |
| 13 | 11, 12 | syl 17 |
. . . 4
|
| 14 | txhmeo.2 |
. . . . 5
| |
| 15 | 14 | toptopon 20722 |
. . . 4
|
| 16 | 13, 15 | sylib 208 |
. . 3
|
| 17 | 8, 16 | cnmpt1st 21471 |
. . . 4
|
| 18 | 8, 16, 17, 3 | cnmpt21f 21475 |
. . 3
|
| 19 | 8, 16 | cnmpt2nd 21472 |
. . . 4
|
| 20 | 8, 16, 19, 11 | cnmpt21f 21475 |
. . 3
|
| 21 | 8, 16, 18, 20 | cnmpt2t 21476 |
. 2
|
| 22 | vex 3203 |
. . . . . . . . . . 11
| |
| 23 | vex 3203 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | op1std 7178 |
. . . . . . . . . 10
|
| 25 | 24 | fveq2d 6195 |
. . . . . . . . 9
|
| 26 | 22, 23 | op2ndd 7179 |
. . . . . . . . . 10
|
| 27 | 26 | fveq2d 6195 |
. . . . . . . . 9
|
| 28 | 25, 27 | opeq12d 4410 |
. . . . . . . 8
|
| 29 | 28 | mpt2mpt 6752 |
. . . . . . 7
|
| 30 | 29 | eqcomi 2631 |
. . . . . 6
|
| 31 | eqid 2622 |
. . . . . . . . . 10
| |
| 32 | 6, 31 | cnf 21050 |
. . . . . . . . 9
|
| 33 | 3, 32 | syl 17 |
. . . . . . . 8
|
| 34 | xp1st 7198 |
. . . . . . . 8
| |
| 35 | ffvelrn 6357 |
. . . . . . . 8
| |
| 36 | 33, 34, 35 | syl2an 494 |
. . . . . . 7
|
| 37 | eqid 2622 |
. . . . . . . . . 10
| |
| 38 | 14, 37 | cnf 21050 |
. . . . . . . . 9
|
| 39 | 11, 38 | syl 17 |
. . . . . . . 8
|
| 40 | xp2nd 7199 |
. . . . . . . 8
| |
| 41 | ffvelrn 6357 |
. . . . . . . 8
| |
| 42 | 39, 40, 41 | syl2an 494 |
. . . . . . 7
|
| 43 | opelxpi 5148 |
. . . . . . 7
| |
| 44 | 36, 42, 43 | syl2anc 693 |
. . . . . 6
|
| 45 | 6, 31 | hmeof1o 21567 |
. . . . . . . . . 10
|
| 46 | 1, 45 | syl 17 |
. . . . . . . . 9
|
| 47 | f1ocnv 6149 |
. . . . . . . . 9
| |
| 48 | f1of 6137 |
. . . . . . . . 9
| |
| 49 | 46, 47, 48 | 3syl 18 |
. . . . . . . 8
|
| 50 | xp1st 7198 |
. . . . . . . 8
| |
| 51 | ffvelrn 6357 |
. . . . . . . 8
| |
| 52 | 49, 50, 51 | syl2an 494 |
. . . . . . 7
|
| 53 | 14, 37 | hmeof1o 21567 |
. . . . . . . . . 10
|
| 54 | 9, 53 | syl 17 |
. . . . . . . . 9
|
| 55 | f1ocnv 6149 |
. . . . . . . . 9
| |
| 56 | f1of 6137 |
. . . . . . . . 9
| |
| 57 | 54, 55, 56 | 3syl 18 |
. . . . . . . 8
|
| 58 | xp2nd 7199 |
. . . . . . . 8
| |
| 59 | ffvelrn 6357 |
. . . . . . . 8
| |
| 60 | 57, 58, 59 | syl2an 494 |
. . . . . . 7
|
| 61 | opelxpi 5148 |
. . . . . . 7
| |
| 62 | 52, 60, 61 | syl2anc 693 |
. . . . . 6
|
| 63 | 46 | adantr 481 |
. . . . . . . . . 10
|
| 64 | 34 | ad2antrl 764 |
. . . . . . . . . 10
|
| 65 | 50 | ad2antll 765 |
. . . . . . . . . 10
|
| 66 | f1ocnvfvb 6535 |
. . . . . . . . . 10
| |
| 67 | 63, 64, 65, 66 | syl3anc 1326 |
. . . . . . . . 9
|
| 68 | eqcom 2629 |
. . . . . . . . 9
| |
| 69 | eqcom 2629 |
. . . . . . . . 9
| |
| 70 | 67, 68, 69 | 3bitr4g 303 |
. . . . . . . 8
|
| 71 | 54 | adantr 481 |
. . . . . . . . . 10
|
| 72 | 40 | ad2antrl 764 |
. . . . . . . . . 10
|
| 73 | 58 | ad2antll 765 |
. . . . . . . . . 10
|
| 74 | f1ocnvfvb 6535 |
. . . . . . . . . 10
| |
| 75 | 71, 72, 73, 74 | syl3anc 1326 |
. . . . . . . . 9
|
| 76 | eqcom 2629 |
. . . . . . . . 9
| |
| 77 | eqcom 2629 |
. . . . . . . . 9
| |
| 78 | 75, 76, 77 | 3bitr4g 303 |
. . . . . . . 8
|
| 79 | 70, 78 | anbi12d 747 |
. . . . . . 7
|
| 80 | eqop 7208 |
. . . . . . . 8
| |
| 81 | 80 | ad2antll 765 |
. . . . . . 7
|
| 82 | eqop 7208 |
. . . . . . . 8
| |
| 83 | 82 | ad2antrl 764 |
. . . . . . 7
|
| 84 | 79, 81, 83 | 3bitr4rd 301 |
. . . . . 6
|
| 85 | 30, 44, 62, 84 | f1ocnv2d 6886 |
. . . . 5
|
| 86 | 85 | simprd 479 |
. . . 4
|
| 87 | vex 3203 |
. . . . . . . 8
| |
| 88 | vex 3203 |
. . . . . . . 8
| |
| 89 | 87, 88 | op1std 7178 |
. . . . . . 7
|
| 90 | 89 | fveq2d 6195 |
. . . . . 6
|
| 91 | 87, 88 | op2ndd 7179 |
. . . . . . 7
|
| 92 | 91 | fveq2d 6195 |
. . . . . 6
|
| 93 | 90, 92 | opeq12d 4410 |
. . . . 5
|
| 94 | 93 | mpt2mpt 6752 |
. . . 4
|
| 95 | 86, 94 | syl6eq 2672 |
. . 3
|
| 96 | cntop2 21045 |
. . . . . 6
| |
| 97 | 3, 96 | syl 17 |
. . . . 5
|
| 98 | 31 | toptopon 20722 |
. . . . 5
|
| 99 | 97, 98 | sylib 208 |
. . . 4
|
| 100 | cntop2 21045 |
. . . . . 6
| |
| 101 | 11, 100 | syl 17 |
. . . . 5
|
| 102 | 37 | toptopon 20722 |
. . . . 5
|
| 103 | 101, 102 | sylib 208 |
. . . 4
|
| 104 | 99, 103 | cnmpt1st 21471 |
. . . . 5
|
| 105 | hmeocnvcn 21564 |
. . . . . 6
| |
| 106 | 1, 105 | syl 17 |
. . . . 5
|
| 107 | 99, 103, 104, 106 | cnmpt21f 21475 |
. . . 4
|
| 108 | 99, 103 | cnmpt2nd 21472 |
. . . . 5
|
| 109 | hmeocnvcn 21564 |
. . . . . 6
| |
| 110 | 9, 109 | syl 17 |
. . . . 5
|
| 111 | 99, 103, 108, 110 | cnmpt21f 21475 |
. . . 4
|
| 112 | 99, 103, 107, 111 | cnmpt2t 21476 |
. . 3
|
| 113 | 95, 112 | eqeltrd 2701 |
. 2
|
| 114 | ishmeo 21562 |
. 2
| |
| 115 | 21, 113, 114 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cn 21031 df-tx 21365 df-hmeo 21558 |
| This theorem is referenced by: xpstopnlem1 21612 |
| Copyright terms: Public domain | W3C validator |