| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpt2co | Structured version Visualization version Unicode version | ||
| Description: Composition of two functions. Variation of fmptco 6396 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| fmpt2co.1 |
|
| fmpt2co.2 |
|
| fmpt2co.3 |
|
| fmpt2co.4 |
|
| Ref | Expression |
|---|---|
| fmpt2co |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt2co.1 |
. . . . . 6
| |
| 2 | 1 | ralrimivva 2971 |
. . . . 5
|
| 3 | eqid 2622 |
. . . . . 6
| |
| 4 | 3 | fmpt2 7237 |
. . . . 5
|
| 5 | 2, 4 | sylib 208 |
. . . 4
|
| 6 | nfcv 2764 |
. . . . . . 7
| |
| 7 | nfcv 2764 |
. . . . . . 7
| |
| 8 | nfcv 2764 |
. . . . . . . 8
| |
| 9 | nfcsb1v 3549 |
. . . . . . . 8
| |
| 10 | 8, 9 | nfcsb 3551 |
. . . . . . 7
|
| 11 | nfcsb1v 3549 |
. . . . . . 7
| |
| 12 | csbeq1a 3542 |
. . . . . . . 8
| |
| 13 | csbeq1a 3542 |
. . . . . . . 8
| |
| 14 | 12, 13 | sylan9eq 2676 |
. . . . . . 7
|
| 15 | 6, 7, 10, 11, 14 | cbvmpt2 6734 |
. . . . . 6
|
| 16 | vex 3203 |
. . . . . . . . . 10
| |
| 17 | vex 3203 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | op2ndd 7179 |
. . . . . . . . 9
|
| 19 | 18 | csbeq1d 3540 |
. . . . . . . 8
|
| 20 | 16, 17 | op1std 7178 |
. . . . . . . . . 10
|
| 21 | 20 | csbeq1d 3540 |
. . . . . . . . 9
|
| 22 | 21 | csbeq2dv 3992 |
. . . . . . . 8
|
| 23 | 19, 22 | eqtrd 2656 |
. . . . . . 7
|
| 24 | 23 | mpt2mpt 6752 |
. . . . . 6
|
| 25 | 15, 24 | eqtr4i 2647 |
. . . . 5
|
| 26 | 25 | fmpt 6381 |
. . . 4
|
| 27 | 5, 26 | sylibr 224 |
. . 3
|
| 28 | fmpt2co.2 |
. . . 4
| |
| 29 | 28, 25 | syl6eq 2672 |
. . 3
|
| 30 | fmpt2co.3 |
. . 3
| |
| 31 | 27, 29, 30 | fmptcos 6398 |
. 2
|
| 32 | 23 | csbeq1d 3540 |
. . . . 5
|
| 33 | 32 | mpt2mpt 6752 |
. . . 4
|
| 34 | nfcv 2764 |
. . . . 5
| |
| 35 | nfcv 2764 |
. . . . 5
| |
| 36 | nfcv 2764 |
. . . . . 6
| |
| 37 | 10, 36 | nfcsb 3551 |
. . . . 5
|
| 38 | nfcv 2764 |
. . . . . 6
| |
| 39 | 11, 38 | nfcsb 3551 |
. . . . 5
|
| 40 | 14 | csbeq1d 3540 |
. . . . 5
|
| 41 | 34, 35, 37, 39, 40 | cbvmpt2 6734 |
. . . 4
|
| 42 | 33, 41 | eqtr4i 2647 |
. . 3
|
| 43 | 1 | 3impb 1260 |
. . . . 5
|
| 44 | nfcvd 2765 |
. . . . . 6
| |
| 45 | fmpt2co.4 |
. . . . . 6
| |
| 46 | 44, 45 | csbiegf 3557 |
. . . . 5
|
| 47 | 43, 46 | syl 17 |
. . . 4
|
| 48 | 47 | mpt2eq3dva 6719 |
. . 3
|
| 49 | 42, 48 | syl5eq 2668 |
. 2
|
| 50 | 31, 49 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: oprabco 7261 evlslem2 19512 txswaphmeolem 21607 xpstopnlem1 21612 stdbdxmet 22320 rrxds 23181 cnre2csqima 29957 cvmlift2lem7 31291 |
| Copyright terms: Public domain | W3C validator |