MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44lem1 Structured version   Visualization version   Unicode version

Theorem tz7.44lem1 7501
Description:  G is a function. Lemma for tz7.44-1 7502, tz7.44-2 7503, and tz7.44-3 7504. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
tz7.44lem1.1  |-  G  =  { <. x ,  y
>.  |  ( (
x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) }
Assertion
Ref Expression
tz7.44lem1  |-  Fun  G
Distinct variable groups:    x, y    y, A    y, H
Allowed substitution hints:    A( x)    G( x, y)    H( x)

Proof of Theorem tz7.44lem1
StepHypRef Expression
1 funopab 5923 . . 3  |-  ( Fun 
{ <. x ,  y
>.  |  ( (
x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) }  <->  A. x E* y ( ( x  =  (/)  /\  y  =  A )  \/  ( -.  (
x  =  (/)  \/  Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) )
2 fvex 6201 . . . 4  |-  ( H `
 ( x `  U. dom  x ) )  e.  _V
3 vex 3203 . . . . 5  |-  x  e. 
_V
4 rnexg 7098 . . . . 5  |-  ( x  e.  _V  ->  ran  x  e.  _V )
5 uniexg 6955 . . . . 5  |-  ( ran  x  e.  _V  ->  U.
ran  x  e.  _V )
63, 4, 5mp2b 10 . . . 4  |-  U. ran  x  e.  _V
7 nlim0 5783 . . . . . 6  |-  -.  Lim  (/)
8 dm0 5339 . . . . . . 7  |-  dom  (/)  =  (/)
9 limeq 5735 . . . . . . 7  |-  ( dom  (/)  =  (/)  ->  ( Lim 
dom  (/)  <->  Lim  (/) ) )
108, 9ax-mp 5 . . . . . 6  |-  ( Lim 
dom  (/)  <->  Lim  (/) )
117, 10mtbir 313 . . . . 5  |-  -.  Lim  dom  (/)
12 dmeq 5324 . . . . . . 7  |-  ( x  =  (/)  ->  dom  x  =  dom  (/) )
13 limeq 5735 . . . . . . 7  |-  ( dom  x  =  dom  (/)  ->  ( Lim  dom  x  <->  Lim  dom  (/) ) )
1412, 13syl 17 . . . . . 6  |-  ( x  =  (/)  ->  ( Lim 
dom  x  <->  Lim  dom  (/) ) )
1514biimpa 501 . . . . 5  |-  ( ( x  =  (/)  /\  Lim  dom  x )  ->  Lim  dom  (/) )
1611, 15mto 188 . . . 4  |-  -.  (
x  =  (/)  /\  Lim  dom  x )
172, 6, 16moeq3 3383 . . 3  |-  E* y
( ( x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) )
181, 17mpgbir 1726 . 2  |-  Fun  { <. x ,  y >.  |  ( ( x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) }
19 tz7.44lem1.1 . . 3  |-  G  =  { <. x ,  y
>.  |  ( (
x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) }
2019funeqi 5909 . 2  |-  ( Fun 
G  <->  Fun  { <. x ,  y >.  |  ( ( x  =  (/)  /\  y  =  A )  \/  ( -.  (
x  =  (/)  \/  Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) } )
2118, 20mpbir 221 1  |-  Fun  G
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   E*wmo 2471   _Vcvv 3200   (/)c0 3915   U.cuni 4436   {copab 4712   dom cdm 5114   ran crn 5115   Lim wlim 5724   Fun wfun 5882   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-ord 5726  df-lim 5728  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator