MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbupgrres Structured version   Visualization version   Unicode version

Theorem nbupgrres 26266
Description: The neighborhood of a vertex in a restricted pseudograph (not necessarily valid for a hypergraph, because  N,  K and  M could be connected by one edge, so  M is a neighbor of  K in the original graph, but not in the restricted graph, because the edge between  M and  K, also incident with  N, was removed). (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.)
Hypotheses
Ref Expression
nbupgrres.v  |-  V  =  (Vtx `  G )
nbupgrres.e  |-  E  =  (Edg `  G )
nbupgrres.f  |-  F  =  { e  e.  E  |  N  e/  e }
nbupgrres.s  |-  S  = 
<. ( V  \  { N } ) ,  (  _I  |`  F ) >.
Assertion
Ref Expression
nbupgrres  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  ( M  e.  ( G NeighbVtx  K )  ->  M  e.  ( S NeighbVtx  K ) ) )
Distinct variable groups:    e, E    e, G    e, K    e, N    e, M    e, V
Allowed substitution hints:    S( e)    F( e)

Proof of Theorem nbupgrres
StepHypRef Expression
1 simp1l 1085 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  G  e. UPGraph  )
2 eldifi 3732 . . . . . . 7  |-  ( K  e.  ( V  \  { N } )  ->  K  e.  V )
323ad2ant2 1083 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  K  e.  V )
4 eldifsn 4317 . . . . . . . . 9  |-  ( M  e.  ( ( V 
\  { N }
)  \  { K } )  <->  ( M  e.  ( V  \  { N } )  /\  M  =/=  K ) )
5 eldifi 3732 . . . . . . . . . 10  |-  ( M  e.  ( V  \  { N } )  ->  M  e.  V )
65anim1i 592 . . . . . . . . 9  |-  ( ( M  e.  ( V 
\  { N }
)  /\  M  =/=  K )  ->  ( M  e.  V  /\  M  =/= 
K ) )
74, 6sylbi 207 . . . . . . . 8  |-  ( M  e.  ( ( V 
\  { N }
)  \  { K } )  ->  ( M  e.  V  /\  M  =/=  K ) )
8 difpr 4334 . . . . . . . 8  |-  ( V 
\  { N ,  K } )  =  ( ( V  \  { N } )  \  { K } )
97, 8eleq2s 2719 . . . . . . 7  |-  ( M  e.  ( V  \  { N ,  K }
)  ->  ( M  e.  V  /\  M  =/= 
K ) )
1093ad2ant3 1084 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  ( M  e.  V  /\  M  =/=  K ) )
11 nbupgrres.v . . . . . . 7  |-  V  =  (Vtx `  G )
12 nbupgrres.e . . . . . . 7  |-  E  =  (Edg `  G )
1311, 12nbupgrel 26241 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  K  e.  V )  /\  ( M  e.  V  /\  M  =/=  K ) )  ->  ( M  e.  ( G NeighbVtx  K )  <->  { M ,  K }  e.  E ) )
141, 3, 10, 13syl21anc 1325 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  ( M  e.  ( G NeighbVtx  K )  <->  { M ,  K }  e.  E )
)
1514biimpa 501 . . . 4  |-  ( ( ( ( G  e. UPGraph  /\  N  e.  V
)  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  /\  M  e.  ( G NeighbVtx  K )
)  ->  { M ,  K }  e.  E
)
168eleq2i 2693 . . . . . . . . . 10  |-  ( M  e.  ( V  \  { N ,  K }
)  <->  M  e.  (
( V  \  { N } )  \  { K } ) )
17 eldifsn 4317 . . . . . . . . . . 11  |-  ( M  e.  ( V  \  { N } )  <->  ( M  e.  V  /\  M  =/= 
N ) )
1817anbi1i 731 . . . . . . . . . 10  |-  ( ( M  e.  ( V 
\  { N }
)  /\  M  =/=  K )  <->  ( ( M  e.  V  /\  M  =/=  N )  /\  M  =/=  K ) )
1916, 4, 183bitri 286 . . . . . . . . 9  |-  ( M  e.  ( V  \  { N ,  K }
)  <->  ( ( M  e.  V  /\  M  =/=  N )  /\  M  =/=  K ) )
20 simpr 477 . . . . . . . . . . 11  |-  ( ( M  e.  V  /\  M  =/=  N )  ->  M  =/=  N )
2120necomd 2849 . . . . . . . . . 10  |-  ( ( M  e.  V  /\  M  =/=  N )  ->  N  =/=  M )
2221adantr 481 . . . . . . . . 9  |-  ( ( ( M  e.  V  /\  M  =/=  N
)  /\  M  =/=  K )  ->  N  =/=  M )
2319, 22sylbi 207 . . . . . . . 8  |-  ( M  e.  ( V  \  { N ,  K }
)  ->  N  =/=  M )
24233ad2ant3 1084 . . . . . . 7  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  N  =/=  M )
25 eldifsn 4317 . . . . . . . . 9  |-  ( K  e.  ( V  \  { N } )  <->  ( K  e.  V  /\  K  =/= 
N ) )
26 simpr 477 . . . . . . . . . 10  |-  ( ( K  e.  V  /\  K  =/=  N )  ->  K  =/=  N )
2726necomd 2849 . . . . . . . . 9  |-  ( ( K  e.  V  /\  K  =/=  N )  ->  N  =/=  K )
2825, 27sylbi 207 . . . . . . . 8  |-  ( K  e.  ( V  \  { N } )  ->  N  =/=  K )
29283ad2ant2 1083 . . . . . . 7  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  N  =/=  K )
3024, 29nelprd 4203 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  -.  N  e.  { M ,  K } )
31 df-nel 2898 . . . . . 6  |-  ( N  e/  { M ,  K }  <->  -.  N  e.  { M ,  K }
)
3230, 31sylibr 224 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  N  e/  { M ,  K } )
3332adantr 481 . . . 4  |-  ( ( ( ( G  e. UPGraph  /\  N  e.  V
)  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  /\  M  e.  ( G NeighbVtx  K )
)  ->  N  e/  { M ,  K }
)
34 neleq2 2903 . . . . 5  |-  ( e  =  { M ,  K }  ->  ( N  e/  e  <->  N  e/  { M ,  K }
) )
35 nbupgrres.f . . . . 5  |-  F  =  { e  e.  E  |  N  e/  e }
3634, 35elrab2 3366 . . . 4  |-  ( { M ,  K }  e.  F  <->  ( { M ,  K }  e.  E  /\  N  e/  { M ,  K } ) )
3715, 33, 36sylanbrc 698 . . 3  |-  ( ( ( ( G  e. UPGraph  /\  N  e.  V
)  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  /\  M  e.  ( G NeighbVtx  K )
)  ->  { M ,  K }  e.  F
)
38 nbupgrres.s . . . . . . . 8  |-  S  = 
<. ( V  \  { N } ) ,  (  _I  |`  F ) >.
3911, 12, 35, 38upgrres1 26205 . . . . . . 7  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  S  e. UPGraph  )
40393ad2ant1 1082 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  S  e. UPGraph  )
41 simp2 1062 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  K  e.  ( V  \  { N } ) )
4216, 4sylbb 209 . . . . . . 7  |-  ( M  e.  ( V  \  { N ,  K }
)  ->  ( M  e.  ( V  \  { N } )  /\  M  =/=  K ) )
43423ad2ant3 1084 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  ( M  e.  ( V  \  { N } )  /\  M  =/=  K
) )
4440, 41, 43jca31 557 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  (
( S  e. UPGraph  /\  K  e.  ( V  \  { N } ) )  /\  ( M  e.  ( V  \  { N }
)  /\  M  =/=  K ) ) )
4544adantr 481 . . . 4  |-  ( ( ( ( G  e. UPGraph  /\  N  e.  V
)  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  /\  M  e.  ( G NeighbVtx  K )
)  ->  ( ( S  e. UPGraph  /\  K  e.  ( V  \  { N } ) )  /\  ( M  e.  ( V  \  { N }
)  /\  M  =/=  K ) ) )
4611, 12, 35, 38upgrres1lem2 26203 . . . . . 6  |-  (Vtx `  S )  =  ( V  \  { N } )
4746eqcomi 2631 . . . . 5  |-  ( V 
\  { N }
)  =  (Vtx `  S )
48 edgval 25941 . . . . . 6  |-  (Edg `  S )  =  ran  (iEdg `  S )
4911, 12, 35, 38upgrres1lem3 26204 . . . . . . 7  |-  (iEdg `  S )  =  (  _I  |`  F )
5049rneqi 5352 . . . . . 6  |-  ran  (iEdg `  S )  =  ran  (  _I  |`  F )
51 rnresi 5479 . . . . . 6  |-  ran  (  _I  |`  F )  =  F
5248, 50, 513eqtrri 2649 . . . . 5  |-  F  =  (Edg `  S )
5347, 52nbupgrel 26241 . . . 4  |-  ( ( ( S  e. UPGraph  /\  K  e.  ( V  \  { N } ) )  /\  ( M  e.  ( V  \  { N }
)  /\  M  =/=  K ) )  ->  ( M  e.  ( S NeighbVtx  K )  <->  { M ,  K }  e.  F )
)
5445, 53syl 17 . . 3  |-  ( ( ( ( G  e. UPGraph  /\  N  e.  V
)  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  /\  M  e.  ( G NeighbVtx  K )
)  ->  ( M  e.  ( S NeighbVtx  K )  <->  { M ,  K }  e.  F ) )
5537, 54mpbird 247 . 2  |-  ( ( ( ( G  e. UPGraph  /\  N  e.  V
)  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  /\  M  e.  ( G NeighbVtx  K )
)  ->  M  e.  ( S NeighbVtx  K ) )
5655ex 450 1  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  K  e.  ( V  \  { N } )  /\  M  e.  ( V  \  { N ,  K }
) )  ->  ( M  e.  ( G NeighbVtx  K )  ->  M  e.  ( S NeighbVtx  K ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   {crab 2916    \ cdif 3571   {csn 4177   {cpr 4179   <.cop 4183    _I cid 5023   ran crn 5115    |` cres 5116   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UPGraph cupgr 25975   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-vtx 25876  df-iedg 25877  df-edg 25940  df-upgr 25977  df-nbgr 26228
This theorem is referenced by:  nbupgruvtxres  26308
  Copyright terms: Public domain W3C validator