MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop0 Structured version   Visualization version   Unicode version

Theorem ustuqtop0 22044
Description: Lemma for ustuqtop 22050. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1  |-  N  =  ( p  e.  X  |->  ran  ( v  e.  U  |->  ( v " { p } ) ) )
Assertion
Ref Expression
ustuqtop0  |-  ( U  e.  (UnifOn `  X
)  ->  N : X
--> ~P ~P X )
Distinct variable groups:    v, p, U    X, p, v    N, p
Allowed substitution hint:    N( v)

Proof of Theorem ustuqtop0
StepHypRef Expression
1 ustimasn 22032 . . . . . . . 8  |-  ( ( U  e.  (UnifOn `  X )  /\  v  e.  U  /\  p  e.  X )  ->  (
v " { p } )  C_  X
)
213expa 1265 . . . . . . 7  |-  ( ( ( U  e.  (UnifOn `  X )  /\  v  e.  U )  /\  p  e.  X )  ->  (
v " { p } )  C_  X
)
32an32s 846 . . . . . 6  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  v  e.  U )  ->  (
v " { p } )  C_  X
)
4 vex 3203 . . . . . . . 8  |-  v  e. 
_V
54imaex 7104 . . . . . . 7  |-  ( v
" { p }
)  e.  _V
65elpw 4164 . . . . . 6  |-  ( ( v " { p } )  e.  ~P X 
<->  ( v " {
p } )  C_  X )
73, 6sylibr 224 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  v  e.  U )  ->  (
v " { p } )  e.  ~P X )
87ralrimiva 2966 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  A. v  e.  U  ( v " { p } )  e.  ~P X )
9 eqid 2622 . . . . 5  |-  ( v  e.  U  |->  ( v
" { p }
) )  =  ( v  e.  U  |->  ( v " { p } ) )
109rnmptss 6392 . . . 4  |-  ( A. v  e.  U  (
v " { p } )  e.  ~P X  ->  ran  ( v  e.  U  |->  ( v
" { p }
) )  C_  ~P X )
118, 10syl 17 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  ran  ( v  e.  U  |->  ( v " {
p } ) ) 
C_  ~P X )
12 mptexg 6484 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  ( v  e.  U  |->  ( v
" { p }
) )  e.  _V )
13 rnexg 7098 . . . . 5  |-  ( ( v  e.  U  |->  ( v " { p } ) )  e. 
_V  ->  ran  ( v  e.  U  |->  ( v
" { p }
) )  e.  _V )
14 elpwg 4166 . . . . 5  |-  ( ran  ( v  e.  U  |->  ( v " {
p } ) )  e.  _V  ->  ( ran  ( v  e.  U  |->  ( v " {
p } ) )  e.  ~P ~P X  <->  ran  ( v  e.  U  |->  ( v " {
p } ) ) 
C_  ~P X ) )
1512, 13, 143syl 18 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  ( ran  ( v  e.  U  |->  ( v " {
p } ) )  e.  ~P ~P X  <->  ran  ( v  e.  U  |->  ( v " {
p } ) ) 
C_  ~P X ) )
1615adantr 481 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  ( ran  ( v  e.  U  |->  ( v " {
p } ) )  e.  ~P ~P X  <->  ran  ( v  e.  U  |->  ( v " {
p } ) ) 
C_  ~P X ) )
1711, 16mpbird 247 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  ran  ( v  e.  U  |->  ( v " {
p } ) )  e.  ~P ~P X
)
18 utopustuq.1 . 2  |-  N  =  ( p  e.  X  |->  ran  ( v  e.  U  |->  ( v " { p } ) ) )
1917, 18fmptd 6385 1  |-  ( U  e.  (UnifOn `  X
)  ->  N : X
--> ~P ~P X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {csn 4177    |-> cmpt 4729   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ust 22004
This theorem is referenced by:  ustuqtop  22050  utopsnneiplem  22051
  Copyright terms: Public domain W3C validator