MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdun Structured version   Visualization version   Unicode version

Theorem vtxdun 26377
Description: The degree of a vertex in the union of two graphs on the same vertex set is the sum of the degrees of the vertex in each graph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 19-Feb-2021.)
Hypotheses
Ref Expression
vtxdun.i  |-  I  =  (iEdg `  G )
vtxdun.j  |-  J  =  (iEdg `  H )
vtxdun.vg  |-  V  =  (Vtx `  G )
vtxdun.vh  |-  ( ph  ->  (Vtx `  H )  =  V )
vtxdun.vu  |-  ( ph  ->  (Vtx `  U )  =  V )
vtxdun.d  |-  ( ph  ->  ( dom  I  i^i 
dom  J )  =  (/) )
vtxdun.fi  |-  ( ph  ->  Fun  I )
vtxdun.fj  |-  ( ph  ->  Fun  J )
vtxdun.n  |-  ( ph  ->  N  e.  V )
vtxdun.u  |-  ( ph  ->  (iEdg `  U )  =  ( I  u.  J ) )
Assertion
Ref Expression
vtxdun  |-  ( ph  ->  ( (VtxDeg `  U
) `  N )  =  ( ( (VtxDeg `  G ) `  N
) +e ( (VtxDeg `  H ) `  N ) ) )

Proof of Theorem vtxdun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-rab 2921 . . . . . . . 8  |-  { x  e.  dom  (iEdg `  U
)  |  N  e.  ( (iEdg `  U
) `  x ) }  =  { x  |  ( x  e. 
dom  (iEdg `  U )  /\  N  e.  (
(iEdg `  U ) `  x ) ) }
2 vtxdun.u . . . . . . . . . . . . . . 15  |-  ( ph  ->  (iEdg `  U )  =  ( I  u.  J ) )
32dmeqd 5326 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  (iEdg `  U
)  =  dom  (
I  u.  J ) )
4 dmun 5331 . . . . . . . . . . . . . 14  |-  dom  (
I  u.  J )  =  ( dom  I  u.  dom  J )
53, 4syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  (iEdg `  U
)  =  ( dom  I  u.  dom  J
) )
65eleq2d 2687 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  dom  (iEdg `  U )  <->  x  e.  ( dom  I  u.  dom  J ) ) )
7 elun 3753 . . . . . . . . . . . 12  |-  ( x  e.  ( dom  I  u.  dom  J )  <->  ( x  e.  dom  I  \/  x  e.  dom  J ) )
86, 7syl6bb 276 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  dom  (iEdg `  U )  <->  ( x  e.  dom  I  \/  x  e.  dom  J ) ) )
98anbi1d 741 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e. 
dom  (iEdg `  U )  /\  N  e.  (
(iEdg `  U ) `  x ) )  <->  ( (
x  e.  dom  I  \/  x  e.  dom  J )  /\  N  e.  ( (iEdg `  U
) `  x )
) ) )
10 andir 912 . . . . . . . . . 10  |-  ( ( ( x  e.  dom  I  \/  x  e.  dom  J )  /\  N  e.  ( (iEdg `  U
) `  x )
)  <->  ( ( x  e.  dom  I  /\  N  e.  ( (iEdg `  U ) `  x
) )  \/  (
x  e.  dom  J  /\  N  e.  (
(iEdg `  U ) `  x ) ) ) )
119, 10syl6bb 276 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e. 
dom  (iEdg `  U )  /\  N  e.  (
(iEdg `  U ) `  x ) )  <->  ( (
x  e.  dom  I  /\  N  e.  (
(iEdg `  U ) `  x ) )  \/  ( x  e.  dom  J  /\  N  e.  ( (iEdg `  U ) `  x ) ) ) ) )
1211abbidv 2741 . . . . . . . 8  |-  ( ph  ->  { x  |  ( x  e.  dom  (iEdg `  U )  /\  N  e.  ( (iEdg `  U
) `  x )
) }  =  {
x  |  ( ( x  e.  dom  I  /\  N  e.  (
(iEdg `  U ) `  x ) )  \/  ( x  e.  dom  J  /\  N  e.  ( (iEdg `  U ) `  x ) ) ) } )
131, 12syl5eq 2668 . . . . . . 7  |-  ( ph  ->  { x  e.  dom  (iEdg `  U )  |  N  e.  ( (iEdg `  U ) `  x
) }  =  {
x  |  ( ( x  e.  dom  I  /\  N  e.  (
(iEdg `  U ) `  x ) )  \/  ( x  e.  dom  J  /\  N  e.  ( (iEdg `  U ) `  x ) ) ) } )
14 unab 3894 . . . . . . . . 9  |-  ( { x  |  ( x  e.  dom  I  /\  N  e.  ( (iEdg `  U ) `  x
) ) }  u.  { x  |  ( x  e.  dom  J  /\  N  e.  ( (iEdg `  U ) `  x
) ) } )  =  { x  |  ( ( x  e. 
dom  I  /\  N  e.  ( (iEdg `  U
) `  x )
)  \/  ( x  e.  dom  J  /\  N  e.  ( (iEdg `  U ) `  x
) ) ) }
1514eqcomi 2631 . . . . . . . 8  |-  { x  |  ( ( x  e.  dom  I  /\  N  e.  ( (iEdg `  U ) `  x
) )  \/  (
x  e.  dom  J  /\  N  e.  (
(iEdg `  U ) `  x ) ) ) }  =  ( { x  |  ( x  e.  dom  I  /\  N  e.  ( (iEdg `  U ) `  x
) ) }  u.  { x  |  ( x  e.  dom  J  /\  N  e.  ( (iEdg `  U ) `  x
) ) } )
1615a1i 11 . . . . . . 7  |-  ( ph  ->  { x  |  ( ( x  e.  dom  I  /\  N  e.  ( (iEdg `  U ) `  x ) )  \/  ( x  e.  dom  J  /\  N  e.  ( (iEdg `  U ) `  x ) ) ) }  =  ( { x  |  ( x  e.  dom  I  /\  N  e.  ( (iEdg `  U ) `  x
) ) }  u.  { x  |  ( x  e.  dom  J  /\  N  e.  ( (iEdg `  U ) `  x
) ) } ) )
17 df-rab 2921 . . . . . . . . 9  |-  { x  e.  dom  I  |  N  e.  ( (iEdg `  U
) `  x ) }  =  { x  |  ( x  e. 
dom  I  /\  N  e.  ( (iEdg `  U
) `  x )
) }
182fveq1d 6193 . . . . . . . . . . . . 13  |-  ( ph  ->  ( (iEdg `  U
) `  x )  =  ( ( I  u.  J ) `  x ) )
1918adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  dom  I )  ->  (
(iEdg `  U ) `  x )  =  ( ( I  u.  J
) `  x )
)
20 vtxdun.fi . . . . . . . . . . . . . . 15  |-  ( ph  ->  Fun  I )
21 funfn 5918 . . . . . . . . . . . . . . 15  |-  ( Fun  I  <->  I  Fn  dom  I )
2220, 21sylib 208 . . . . . . . . . . . . . 14  |-  ( ph  ->  I  Fn  dom  I
)
2322adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  dom  I )  ->  I  Fn  dom  I )
24 vtxdun.fj . . . . . . . . . . . . . . 15  |-  ( ph  ->  Fun  J )
25 funfn 5918 . . . . . . . . . . . . . . 15  |-  ( Fun 
J  <->  J  Fn  dom  J )
2624, 25sylib 208 . . . . . . . . . . . . . 14  |-  ( ph  ->  J  Fn  dom  J
)
2726adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  dom  I )  ->  J  Fn  dom  J )
28 vtxdun.d . . . . . . . . . . . . . 14  |-  ( ph  ->  ( dom  I  i^i 
dom  J )  =  (/) )
2928anim1i 592 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  dom  I )  ->  (
( dom  I  i^i  dom 
J )  =  (/)  /\  x  e.  dom  I
) )
30 fvun1 6269 . . . . . . . . . . . . 13  |-  ( ( I  Fn  dom  I  /\  J  Fn  dom  J  /\  ( ( dom  I  i^i  dom  J
)  =  (/)  /\  x  e.  dom  I ) )  ->  ( ( I  u.  J ) `  x )  =  ( I `  x ) )
3123, 27, 29, 30syl3anc 1326 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  dom  I )  ->  (
( I  u.  J
) `  x )  =  ( I `  x ) )
3219, 31eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  dom  I )  ->  (
(iEdg `  U ) `  x )  =  ( I `  x ) )
3332eleq2d 2687 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  dom  I )  ->  ( N  e.  ( (iEdg `  U ) `  x
)  <->  N  e.  (
I `  x )
) )
3433rabbidva 3188 . . . . . . . . 9  |-  ( ph  ->  { x  e.  dom  I  |  N  e.  ( (iEdg `  U ) `  x ) }  =  { x  e.  dom  I  |  N  e.  ( I `  x
) } )
3517, 34syl5eqr 2670 . . . . . . . 8  |-  ( ph  ->  { x  |  ( x  e.  dom  I  /\  N  e.  (
(iEdg `  U ) `  x ) ) }  =  { x  e. 
dom  I  |  N  e.  ( I `  x
) } )
36 df-rab 2921 . . . . . . . . 9  |-  { x  e.  dom  J  |  N  e.  ( (iEdg `  U
) `  x ) }  =  { x  |  ( x  e. 
dom  J  /\  N  e.  ( (iEdg `  U
) `  x )
) }
3718adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  dom  J )  ->  (
(iEdg `  U ) `  x )  =  ( ( I  u.  J
) `  x )
)
3822adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  dom  J )  ->  I  Fn  dom  I )
3926adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  dom  J )  ->  J  Fn  dom  J )
4028anim1i 592 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  dom  J )  ->  (
( dom  I  i^i  dom 
J )  =  (/)  /\  x  e.  dom  J
) )
41 fvun2 6270 . . . . . . . . . . . . 13  |-  ( ( I  Fn  dom  I  /\  J  Fn  dom  J  /\  ( ( dom  I  i^i  dom  J
)  =  (/)  /\  x  e.  dom  J ) )  ->  ( ( I  u.  J ) `  x )  =  ( J `  x ) )
4238, 39, 40, 41syl3anc 1326 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  dom  J )  ->  (
( I  u.  J
) `  x )  =  ( J `  x ) )
4337, 42eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  dom  J )  ->  (
(iEdg `  U ) `  x )  =  ( J `  x ) )
4443eleq2d 2687 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  dom  J )  ->  ( N  e.  ( (iEdg `  U ) `  x
)  <->  N  e.  ( J `  x )
) )
4544rabbidva 3188 . . . . . . . . 9  |-  ( ph  ->  { x  e.  dom  J  |  N  e.  ( (iEdg `  U ) `  x ) }  =  { x  e.  dom  J  |  N  e.  ( J `  x ) } )
4636, 45syl5eqr 2670 . . . . . . . 8  |-  ( ph  ->  { x  |  ( x  e.  dom  J  /\  N  e.  (
(iEdg `  U ) `  x ) ) }  =  { x  e. 
dom  J  |  N  e.  ( J `  x
) } )
4735, 46uneq12d 3768 . . . . . . 7  |-  ( ph  ->  ( { x  |  ( x  e.  dom  I  /\  N  e.  ( (iEdg `  U ) `  x ) ) }  u.  { x  |  ( x  e.  dom  J  /\  N  e.  ( (iEdg `  U ) `  x ) ) } )  =  ( { x  e.  dom  I  |  N  e.  (
I `  x ) }  u.  { x  e.  dom  J  |  N  e.  ( J `  x
) } ) )
4813, 16, 473eqtrd 2660 . . . . . 6  |-  ( ph  ->  { x  e.  dom  (iEdg `  U )  |  N  e.  ( (iEdg `  U ) `  x
) }  =  ( { x  e.  dom  I  |  N  e.  ( I `  x
) }  u.  {
x  e.  dom  J  |  N  e.  ( J `  x ) } ) )
4948fveq2d 6195 . . . . 5  |-  ( ph  ->  ( # `  {
x  e.  dom  (iEdg `  U )  |  N  e.  ( (iEdg `  U
) `  x ) } )  =  (
# `  ( {
x  e.  dom  I  |  N  e.  (
I `  x ) }  u.  { x  e.  dom  J  |  N  e.  ( J `  x
) } ) ) )
50 vtxdun.i . . . . . . . . . 10  |-  I  =  (iEdg `  G )
51 fvex 6201 . . . . . . . . . 10  |-  (iEdg `  G )  e.  _V
5250, 51eqeltri 2697 . . . . . . . . 9  |-  I  e. 
_V
5352dmex 7099 . . . . . . . 8  |-  dom  I  e.  _V
5453rabex 4813 . . . . . . 7  |-  { x  e.  dom  I  |  N  e.  ( I `  x
) }  e.  _V
5554a1i 11 . . . . . 6  |-  ( ph  ->  { x  e.  dom  I  |  N  e.  ( I `  x
) }  e.  _V )
56 vtxdun.j . . . . . . . . . 10  |-  J  =  (iEdg `  H )
57 fvex 6201 . . . . . . . . . 10  |-  (iEdg `  H )  e.  _V
5856, 57eqeltri 2697 . . . . . . . . 9  |-  J  e. 
_V
5958dmex 7099 . . . . . . . 8  |-  dom  J  e.  _V
6059rabex 4813 . . . . . . 7  |-  { x  e.  dom  J  |  N  e.  ( J `  x
) }  e.  _V
6160a1i 11 . . . . . 6  |-  ( ph  ->  { x  e.  dom  J  |  N  e.  ( J `  x ) }  e.  _V )
62 ssrab2 3687 . . . . . . . . 9  |-  { x  e.  dom  I  |  N  e.  ( I `  x
) }  C_  dom  I
63 ssrab2 3687 . . . . . . . . 9  |-  { x  e.  dom  J  |  N  e.  ( J `  x
) }  C_  dom  J
64 ss2in 3840 . . . . . . . . 9  |-  ( ( { x  e.  dom  I  |  N  e.  ( I `  x
) }  C_  dom  I  /\  { x  e. 
dom  J  |  N  e.  ( J `  x
) }  C_  dom  J )  ->  ( {
x  e.  dom  I  |  N  e.  (
I `  x ) }  i^i  { x  e. 
dom  J  |  N  e.  ( J `  x
) } )  C_  ( dom  I  i^i  dom  J ) )
6562, 63, 64mp2an 708 . . . . . . . 8  |-  ( { x  e.  dom  I  |  N  e.  (
I `  x ) }  i^i  { x  e. 
dom  J  |  N  e.  ( J `  x
) } )  C_  ( dom  I  i^i  dom  J )
6665, 28syl5sseq 3653 . . . . . . 7  |-  ( ph  ->  ( { x  e. 
dom  I  |  N  e.  ( I `  x
) }  i^i  {
x  e.  dom  J  |  N  e.  ( J `  x ) } )  C_  (/) )
67 ss0 3974 . . . . . . 7  |-  ( ( { x  e.  dom  I  |  N  e.  ( I `  x
) }  i^i  {
x  e.  dom  J  |  N  e.  ( J `  x ) } )  C_  (/)  ->  ( { x  e.  dom  I  |  N  e.  ( I `  x
) }  i^i  {
x  e.  dom  J  |  N  e.  ( J `  x ) } )  =  (/) )
6866, 67syl 17 . . . . . 6  |-  ( ph  ->  ( { x  e. 
dom  I  |  N  e.  ( I `  x
) }  i^i  {
x  e.  dom  J  |  N  e.  ( J `  x ) } )  =  (/) )
69 hashunx 13175 . . . . . 6  |-  ( ( { x  e.  dom  I  |  N  e.  ( I `  x
) }  e.  _V  /\ 
{ x  e.  dom  J  |  N  e.  ( J `  x ) }  e.  _V  /\  ( { x  e.  dom  I  |  N  e.  ( I `  x
) }  i^i  {
x  e.  dom  J  |  N  e.  ( J `  x ) } )  =  (/) )  ->  ( # `  ( { x  e.  dom  I  |  N  e.  ( I `  x
) }  u.  {
x  e.  dom  J  |  N  e.  ( J `  x ) } ) )  =  ( ( # `  {
x  e.  dom  I  |  N  e.  (
I `  x ) } ) +e
( # `  { x  e.  dom  J  |  N  e.  ( J `  x
) } ) ) )
7055, 61, 68, 69syl3anc 1326 . . . . 5  |-  ( ph  ->  ( # `  ( { x  e.  dom  I  |  N  e.  ( I `  x
) }  u.  {
x  e.  dom  J  |  N  e.  ( J `  x ) } ) )  =  ( ( # `  {
x  e.  dom  I  |  N  e.  (
I `  x ) } ) +e
( # `  { x  e.  dom  J  |  N  e.  ( J `  x
) } ) ) )
7149, 70eqtrd 2656 . . . 4  |-  ( ph  ->  ( # `  {
x  e.  dom  (iEdg `  U )  |  N  e.  ( (iEdg `  U
) `  x ) } )  =  ( ( # `  {
x  e.  dom  I  |  N  e.  (
I `  x ) } ) +e
( # `  { x  e.  dom  J  |  N  e.  ( J `  x
) } ) ) )
72 df-rab 2921 . . . . . . . 8  |-  { x  e.  dom  (iEdg `  U
)  |  ( (iEdg `  U ) `  x
)  =  { N } }  =  {
x  |  ( x  e.  dom  (iEdg `  U )  /\  (
(iEdg `  U ) `  x )  =  { N } ) }
738anbi1d 741 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e. 
dom  (iEdg `  U )  /\  ( (iEdg `  U
) `  x )  =  { N } )  <-> 
( ( x  e. 
dom  I  \/  x  e.  dom  J )  /\  ( (iEdg `  U ) `  x )  =  { N } ) ) )
74 andir 912 . . . . . . . . . 10  |-  ( ( ( x  e.  dom  I  \/  x  e.  dom  J )  /\  (
(iEdg `  U ) `  x )  =  { N } )  <->  ( (
x  e.  dom  I  /\  ( (iEdg `  U
) `  x )  =  { N } )  \/  ( x  e. 
dom  J  /\  (
(iEdg `  U ) `  x )  =  { N } ) ) )
7573, 74syl6bb 276 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e. 
dom  (iEdg `  U )  /\  ( (iEdg `  U
) `  x )  =  { N } )  <-> 
( ( x  e. 
dom  I  /\  (
(iEdg `  U ) `  x )  =  { N } )  \/  (
x  e.  dom  J  /\  ( (iEdg `  U
) `  x )  =  { N } ) ) ) )
7675abbidv 2741 . . . . . . . 8  |-  ( ph  ->  { x  |  ( x  e.  dom  (iEdg `  U )  /\  (
(iEdg `  U ) `  x )  =  { N } ) }  =  { x  |  (
( x  e.  dom  I  /\  ( (iEdg `  U ) `  x
)  =  { N } )  \/  (
x  e.  dom  J  /\  ( (iEdg `  U
) `  x )  =  { N } ) ) } )
7772, 76syl5eq 2668 . . . . . . 7  |-  ( ph  ->  { x  e.  dom  (iEdg `  U )  |  ( (iEdg `  U
) `  x )  =  { N } }  =  { x  |  ( ( x  e.  dom  I  /\  ( (iEdg `  U ) `  x
)  =  { N } )  \/  (
x  e.  dom  J  /\  ( (iEdg `  U
) `  x )  =  { N } ) ) } )
78 unab 3894 . . . . . . . . 9  |-  ( { x  |  ( x  e.  dom  I  /\  ( (iEdg `  U ) `  x )  =  { N } ) }  u.  { x  |  ( x  e.  dom  J  /\  ( (iEdg `  U ) `  x )  =  { N } ) } )  =  { x  |  ( ( x  e. 
dom  I  /\  (
(iEdg `  U ) `  x )  =  { N } )  \/  (
x  e.  dom  J  /\  ( (iEdg `  U
) `  x )  =  { N } ) ) }
7978eqcomi 2631 . . . . . . . 8  |-  { x  |  ( ( x  e.  dom  I  /\  ( (iEdg `  U ) `  x )  =  { N } )  \/  (
x  e.  dom  J  /\  ( (iEdg `  U
) `  x )  =  { N } ) ) }  =  ( { x  |  ( x  e.  dom  I  /\  ( (iEdg `  U
) `  x )  =  { N } ) }  u.  { x  |  ( x  e. 
dom  J  /\  (
(iEdg `  U ) `  x )  =  { N } ) } )
8079a1i 11 . . . . . . 7  |-  ( ph  ->  { x  |  ( ( x  e.  dom  I  /\  ( (iEdg `  U ) `  x
)  =  { N } )  \/  (
x  e.  dom  J  /\  ( (iEdg `  U
) `  x )  =  { N } ) ) }  =  ( { x  |  ( x  e.  dom  I  /\  ( (iEdg `  U
) `  x )  =  { N } ) }  u.  { x  |  ( x  e. 
dom  J  /\  (
(iEdg `  U ) `  x )  =  { N } ) } ) )
81 df-rab 2921 . . . . . . . . 9  |-  { x  e.  dom  I  |  ( (iEdg `  U ) `  x )  =  { N } }  =  {
x  |  ( x  e.  dom  I  /\  ( (iEdg `  U ) `  x )  =  { N } ) }
8232eqeq1d 2624 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  dom  I )  ->  (
( (iEdg `  U
) `  x )  =  { N }  <->  ( I `  x )  =  { N } ) )
8382rabbidva 3188 . . . . . . . . 9  |-  ( ph  ->  { x  e.  dom  I  |  ( (iEdg `  U ) `  x
)  =  { N } }  =  {
x  e.  dom  I  |  ( I `  x )  =  { N } } )
8481, 83syl5eqr 2670 . . . . . . . 8  |-  ( ph  ->  { x  |  ( x  e.  dom  I  /\  ( (iEdg `  U
) `  x )  =  { N } ) }  =  { x  e.  dom  I  |  ( I `  x )  =  { N } } )
85 df-rab 2921 . . . . . . . . 9  |-  { x  e.  dom  J  |  ( (iEdg `  U ) `  x )  =  { N } }  =  {
x  |  ( x  e.  dom  J  /\  ( (iEdg `  U ) `  x )  =  { N } ) }
8643eqeq1d 2624 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  dom  J )  ->  (
( (iEdg `  U
) `  x )  =  { N }  <->  ( J `  x )  =  { N } ) )
8786rabbidva 3188 . . . . . . . . 9  |-  ( ph  ->  { x  e.  dom  J  |  ( (iEdg `  U ) `  x
)  =  { N } }  =  {
x  e.  dom  J  |  ( J `  x )  =  { N } } )
8885, 87syl5eqr 2670 . . . . . . . 8  |-  ( ph  ->  { x  |  ( x  e.  dom  J  /\  ( (iEdg `  U
) `  x )  =  { N } ) }  =  { x  e.  dom  J  |  ( J `  x )  =  { N } } )
8984, 88uneq12d 3768 . . . . . . 7  |-  ( ph  ->  ( { x  |  ( x  e.  dom  I  /\  ( (iEdg `  U ) `  x
)  =  { N } ) }  u.  { x  |  ( x  e.  dom  J  /\  ( (iEdg `  U ) `  x )  =  { N } ) } )  =  ( { x  e.  dom  I  |  ( I `  x )  =  { N } }  u.  { x  e.  dom  J  |  ( J `  x )  =  { N } } ) )
9077, 80, 893eqtrd 2660 . . . . . 6  |-  ( ph  ->  { x  e.  dom  (iEdg `  U )  |  ( (iEdg `  U
) `  x )  =  { N } }  =  ( { x  e.  dom  I  |  ( I `  x )  =  { N } }  u.  { x  e.  dom  J  |  ( J `  x )  =  { N } } ) )
9190fveq2d 6195 . . . . 5  |-  ( ph  ->  ( # `  {
x  e.  dom  (iEdg `  U )  |  ( (iEdg `  U ) `  x )  =  { N } } )  =  ( # `  ( { x  e.  dom  I  |  ( I `  x )  =  { N } }  u.  {
x  e.  dom  J  |  ( J `  x )  =  { N } } ) ) )
9253rabex 4813 . . . . . . 7  |-  { x  e.  dom  I  |  ( I `  x )  =  { N } }  e.  _V
9392a1i 11 . . . . . 6  |-  ( ph  ->  { x  e.  dom  I  |  ( I `  x )  =  { N } }  e.  _V )
9459rabex 4813 . . . . . . 7  |-  { x  e.  dom  J  |  ( J `  x )  =  { N } }  e.  _V
9594a1i 11 . . . . . 6  |-  ( ph  ->  { x  e.  dom  J  |  ( J `  x )  =  { N } }  e.  _V )
96 ssrab2 3687 . . . . . . . . 9  |-  { x  e.  dom  I  |  ( I `  x )  =  { N } }  C_  dom  I
97 ssrab2 3687 . . . . . . . . 9  |-  { x  e.  dom  J  |  ( J `  x )  =  { N } }  C_  dom  J
98 ss2in 3840 . . . . . . . . 9  |-  ( ( { x  e.  dom  I  |  ( I `  x )  =  { N } }  C_  dom  I  /\  { x  e. 
dom  J  |  ( J `  x )  =  { N } }  C_ 
dom  J )  -> 
( { x  e. 
dom  I  |  ( I `  x )  =  { N } }  i^i  { x  e. 
dom  J  |  ( J `  x )  =  { N } }
)  C_  ( dom  I  i^i  dom  J )
)
9996, 97, 98mp2an 708 . . . . . . . 8  |-  ( { x  e.  dom  I  |  ( I `  x )  =  { N } }  i^i  {
x  e.  dom  J  |  ( J `  x )  =  { N } } )  C_  ( dom  I  i^i  dom  J )
10099, 28syl5sseq 3653 . . . . . . 7  |-  ( ph  ->  ( { x  e. 
dom  I  |  ( I `  x )  =  { N } }  i^i  { x  e. 
dom  J  |  ( J `  x )  =  { N } }
)  C_  (/) )
101 ss0 3974 . . . . . . 7  |-  ( ( { x  e.  dom  I  |  ( I `  x )  =  { N } }  i^i  {
x  e.  dom  J  |  ( J `  x )  =  { N } } )  C_  (/) 
->  ( { x  e. 
dom  I  |  ( I `  x )  =  { N } }  i^i  { x  e. 
dom  J  |  ( J `  x )  =  { N } }
)  =  (/) )
102100, 101syl 17 . . . . . 6  |-  ( ph  ->  ( { x  e. 
dom  I  |  ( I `  x )  =  { N } }  i^i  { x  e. 
dom  J  |  ( J `  x )  =  { N } }
)  =  (/) )
103 hashunx 13175 . . . . . 6  |-  ( ( { x  e.  dom  I  |  ( I `  x )  =  { N } }  e.  _V  /\ 
{ x  e.  dom  J  |  ( J `  x )  =  { N } }  e.  _V  /\  ( { x  e. 
dom  I  |  ( I `  x )  =  { N } }  i^i  { x  e. 
dom  J  |  ( J `  x )  =  { N } }
)  =  (/) )  -> 
( # `  ( { x  e.  dom  I  |  ( I `  x )  =  { N } }  u.  {
x  e.  dom  J  |  ( J `  x )  =  { N } } ) )  =  ( ( # `  { x  e.  dom  I  |  ( I `  x )  =  { N } } ) +e ( # `  {
x  e.  dom  J  |  ( J `  x )  =  { N } } ) ) )
10493, 95, 102, 103syl3anc 1326 . . . . 5  |-  ( ph  ->  ( # `  ( { x  e.  dom  I  |  ( I `  x )  =  { N } }  u.  {
x  e.  dom  J  |  ( J `  x )  =  { N } } ) )  =  ( ( # `  { x  e.  dom  I  |  ( I `  x )  =  { N } } ) +e ( # `  {
x  e.  dom  J  |  ( J `  x )  =  { N } } ) ) )
10591, 104eqtrd 2656 . . . 4  |-  ( ph  ->  ( # `  {
x  e.  dom  (iEdg `  U )  |  ( (iEdg `  U ) `  x )  =  { N } } )  =  ( ( # `  {
x  e.  dom  I  |  ( I `  x )  =  { N } } ) +e ( # `  {
x  e.  dom  J  |  ( J `  x )  =  { N } } ) ) )
10671, 105oveq12d 6668 . . 3  |-  ( ph  ->  ( ( # `  {
x  e.  dom  (iEdg `  U )  |  N  e.  ( (iEdg `  U
) `  x ) } ) +e
( # `  { x  e.  dom  (iEdg `  U
)  |  ( (iEdg `  U ) `  x
)  =  { N } } ) )  =  ( ( ( # `  { x  e.  dom  I  |  N  e.  ( I `  x
) } ) +e ( # `  {
x  e.  dom  J  |  N  e.  ( J `  x ) } ) ) +e ( ( # `  { x  e.  dom  I  |  ( I `  x )  =  { N } } ) +e ( # `  {
x  e.  dom  J  |  ( J `  x )  =  { N } } ) ) ) )
107 hashxnn0 13127 . . . . 5  |-  ( { x  e.  dom  I  |  N  e.  (
I `  x ) }  e.  _V  ->  (
# `  { x  e.  dom  I  |  N  e.  ( I `  x
) } )  e. NN0*
)
10855, 107syl 17 . . . 4  |-  ( ph  ->  ( # `  {
x  e.  dom  I  |  N  e.  (
I `  x ) } )  e. NN0* )
109 hashxnn0 13127 . . . . 5  |-  ( { x  e.  dom  J  |  N  e.  ( J `  x ) }  e.  _V  ->  (
# `  { x  e.  dom  J  |  N  e.  ( J `  x
) } )  e. NN0*
)
11061, 109syl 17 . . . 4  |-  ( ph  ->  ( # `  {
x  e.  dom  J  |  N  e.  ( J `  x ) } )  e. NN0* )
111 hashxnn0 13127 . . . . 5  |-  ( { x  e.  dom  I  |  ( I `  x )  =  { N } }  e.  _V  ->  ( # `  {
x  e.  dom  I  |  ( I `  x )  =  { N } } )  e. NN0*
)
11293, 111syl 17 . . . 4  |-  ( ph  ->  ( # `  {
x  e.  dom  I  |  ( I `  x )  =  { N } } )  e. NN0*
)
113 hashxnn0 13127 . . . . 5  |-  ( { x  e.  dom  J  |  ( J `  x )  =  { N } }  e.  _V  ->  ( # `  {
x  e.  dom  J  |  ( J `  x )  =  { N } } )  e. NN0*
)
11495, 113syl 17 . . . 4  |-  ( ph  ->  ( # `  {
x  e.  dom  J  |  ( J `  x )  =  { N } } )  e. NN0*
)
115108, 110, 112, 114xnn0add4d 12134 . . 3  |-  ( ph  ->  ( ( ( # `  { x  e.  dom  I  |  N  e.  ( I `  x
) } ) +e ( # `  {
x  e.  dom  J  |  N  e.  ( J `  x ) } ) ) +e ( ( # `  { x  e.  dom  I  |  ( I `  x )  =  { N } } ) +e ( # `  {
x  e.  dom  J  |  ( J `  x )  =  { N } } ) ) )  =  ( ( ( # `  {
x  e.  dom  I  |  N  e.  (
I `  x ) } ) +e
( # `  { x  e.  dom  I  |  ( I `  x )  =  { N } } ) ) +e ( ( # `  { x  e.  dom  J  |  N  e.  ( J `  x ) } ) +e
( # `  { x  e.  dom  J  |  ( J `  x )  =  { N } } ) ) ) )
116106, 115eqtrd 2656 . 2  |-  ( ph  ->  ( ( # `  {
x  e.  dom  (iEdg `  U )  |  N  e.  ( (iEdg `  U
) `  x ) } ) +e
( # `  { x  e.  dom  (iEdg `  U
)  |  ( (iEdg `  U ) `  x
)  =  { N } } ) )  =  ( ( ( # `  { x  e.  dom  I  |  N  e.  ( I `  x
) } ) +e ( # `  {
x  e.  dom  I  |  ( I `  x )  =  { N } } ) ) +e ( (
# `  { x  e.  dom  J  |  N  e.  ( J `  x
) } ) +e ( # `  {
x  e.  dom  J  |  ( J `  x )  =  { N } } ) ) ) )
117 vtxdun.n . . . 4  |-  ( ph  ->  N  e.  V )
118 vtxdun.vu . . . 4  |-  ( ph  ->  (Vtx `  U )  =  V )
119117, 118eleqtrrd 2704 . . 3  |-  ( ph  ->  N  e.  (Vtx `  U ) )
120 eqid 2622 . . . 4  |-  (Vtx `  U )  =  (Vtx
`  U )
121 eqid 2622 . . . 4  |-  (iEdg `  U )  =  (iEdg `  U )
122 eqid 2622 . . . 4  |-  dom  (iEdg `  U )  =  dom  (iEdg `  U )
123120, 121, 122vtxdgval 26364 . . 3  |-  ( N  e.  (Vtx `  U
)  ->  ( (VtxDeg `  U ) `  N
)  =  ( (
# `  { x  e.  dom  (iEdg `  U
)  |  N  e.  ( (iEdg `  U
) `  x ) } ) +e
( # `  { x  e.  dom  (iEdg `  U
)  |  ( (iEdg `  U ) `  x
)  =  { N } } ) ) )
124119, 123syl 17 . 2  |-  ( ph  ->  ( (VtxDeg `  U
) `  N )  =  ( ( # `  { x  e.  dom  (iEdg `  U )  |  N  e.  ( (iEdg `  U ) `  x
) } ) +e ( # `  {
x  e.  dom  (iEdg `  U )  |  ( (iEdg `  U ) `  x )  =  { N } } ) ) )
125 vtxdun.vg . . . . 5  |-  V  =  (Vtx `  G )
126 eqid 2622 . . . . 5  |-  dom  I  =  dom  I
127125, 50, 126vtxdgval 26364 . . . 4  |-  ( N  e.  V  ->  (
(VtxDeg `  G ) `  N )  =  ( ( # `  {
x  e.  dom  I  |  N  e.  (
I `  x ) } ) +e
( # `  { x  e.  dom  I  |  ( I `  x )  =  { N } } ) ) )
128117, 127syl 17 . . 3  |-  ( ph  ->  ( (VtxDeg `  G
) `  N )  =  ( ( # `  { x  e.  dom  I  |  N  e.  ( I `  x
) } ) +e ( # `  {
x  e.  dom  I  |  ( I `  x )  =  { N } } ) ) )
129 vtxdun.vh . . . . 5  |-  ( ph  ->  (Vtx `  H )  =  V )
130117, 129eleqtrrd 2704 . . . 4  |-  ( ph  ->  N  e.  (Vtx `  H ) )
131 eqid 2622 . . . . 5  |-  (Vtx `  H )  =  (Vtx
`  H )
132 eqid 2622 . . . . 5  |-  dom  J  =  dom  J
133131, 56, 132vtxdgval 26364 . . . 4  |-  ( N  e.  (Vtx `  H
)  ->  ( (VtxDeg `  H ) `  N
)  =  ( (
# `  { x  e.  dom  J  |  N  e.  ( J `  x
) } ) +e ( # `  {
x  e.  dom  J  |  ( J `  x )  =  { N } } ) ) )
134130, 133syl 17 . . 3  |-  ( ph  ->  ( (VtxDeg `  H
) `  N )  =  ( ( # `  { x  e.  dom  J  |  N  e.  ( J `  x ) } ) +e
( # `  { x  e.  dom  J  |  ( J `  x )  =  { N } } ) ) )
135128, 134oveq12d 6668 . 2  |-  ( ph  ->  ( ( (VtxDeg `  G ) `  N
) +e ( (VtxDeg `  H ) `  N ) )  =  ( ( ( # `  { x  e.  dom  I  |  N  e.  ( I `  x
) } ) +e ( # `  {
x  e.  dom  I  |  ( I `  x )  =  { N } } ) ) +e ( (
# `  { x  e.  dom  J  |  N  e.  ( J `  x
) } ) +e ( # `  {
x  e.  dom  J  |  ( J `  x )  =  { N } } ) ) ) )
136116, 124, 1353eqtr4d 2666 1  |-  ( ph  ->  ( (VtxDeg `  U
) `  N )  =  ( ( (VtxDeg `  G ) `  N
) +e ( (VtxDeg `  H ) `  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   dom cdm 5114   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650  NN0*cxnn0 11363   +ecxad 11944   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-hash 13118  df-vtxdg 26362
This theorem is referenced by:  vtxdfiun  26378  vtxduhgrun  26379  p1evtxdeqlem  26408
  Copyright terms: Public domain W3C validator