MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem1 Structured version   Visualization version   Unicode version

Theorem hsmexlem1 9248
Description: Lemma for hsmex 9254. Bound the order type of a limited-cardinality set of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
hsmexlem.o  |-  O  = OrdIso
(  _E  ,  A
)
Assertion
Ref Expression
hsmexlem1  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  e.  (har `  ~P B ) )

Proof of Theorem hsmexlem1
StepHypRef Expression
1 hsmexlem.o . . . 4  |-  O  = OrdIso
(  _E  ,  A
)
21oicl 8434 . . 3  |-  Ord  dom  O
3 relwdom 8471 . . . . . . . 8  |-  Rel  ~<_*
43brrelexi 5158 . . . . . . 7  |-  ( A  ~<_*  B  ->  A  e.  _V )
54adantl 482 . . . . . 6  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  A  e.  _V )
6 uniexg 6955 . . . . . 6  |-  ( A  e.  _V  ->  U. A  e.  _V )
7 sucexg 7010 . . . . . 6  |-  ( U. A  e.  _V  ->  suc  U. A  e.  _V )
85, 6, 73syl 18 . . . . 5  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  suc  U. A  e.  _V )
91oif 8435 . . . . . . 7  |-  O : dom  O --> A
10 onsucuni 7028 . . . . . . . 8  |-  ( A 
C_  On  ->  A  C_  suc  U. A )
1110adantr 481 . . . . . . 7  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  A  C_  suc  U. A )
12 fss 6056 . . . . . . 7  |-  ( ( O : dom  O --> A  /\  A  C_  suc  U. A )  ->  O : dom  O --> suc  U. A )
139, 11, 12sylancr 695 . . . . . 6  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  O : dom  O --> suc  U. A )
141oismo 8445 . . . . . . . 8  |-  ( A 
C_  On  ->  ( Smo 
O  /\  ran  O  =  A ) )
1514adantr 481 . . . . . . 7  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  ( Smo  O  /\  ran  O  =  A ) )
1615simpld 475 . . . . . 6  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  Smo  O )
17 ssorduni 6985 . . . . . . . 8  |-  ( A 
C_  On  ->  Ord  U. A )
1817adantr 481 . . . . . . 7  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  Ord  U. A
)
19 ordsuc 7014 . . . . . . 7  |-  ( Ord  U. A  <->  Ord  suc  U. A )
2018, 19sylib 208 . . . . . 6  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  Ord  suc  U. A )
21 smorndom 7465 . . . . . 6  |-  ( ( O : dom  O --> suc  U. A  /\  Smo  O  /\  Ord  suc  U. A )  ->  dom  O 
C_  suc  U. A )
2213, 16, 20, 21syl3anc 1326 . . . . 5  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  C_  suc  U. A )
238, 22ssexd 4805 . . . 4  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  e. 
_V )
24 elong 5731 . . . 4  |-  ( dom 
O  e.  _V  ->  ( dom  O  e.  On  <->  Ord 
dom  O ) )
2523, 24syl 17 . . 3  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  ( dom  O  e.  On  <->  Ord  dom  O
) )
262, 25mpbiri 248 . 2  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  e.  On )
27 canth2g 8114 . . . 4  |-  ( dom 
O  e.  _V  ->  dom 
O  ~<  ~P dom  O
)
28 sdomdom 7983 . . . 4  |-  ( dom 
O  ~<  ~P dom  O  ->  dom  O  ~<_  ~P dom  O )
2923, 27, 283syl 18 . . 3  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  ~<_  ~P
dom  O )
30 simpl 473 . . . . . . . . . . 11  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  A  C_  On )
31 epweon 6983 . . . . . . . . . . 11  |-  _E  We  On
32 wess 5101 . . . . . . . . . . 11  |-  ( A 
C_  On  ->  (  _E  We  On  ->  _E  We  A ) )
3330, 31, 32mpisyl 21 . . . . . . . . . 10  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  _E  We  A )
34 epse 5097 . . . . . . . . . 10  |-  _E Se  A
351oiiso2 8436 . . . . . . . . . 10  |-  ( (  _E  We  A  /\  _E Se  A )  ->  O  Isom  _E  ,  _E  ( dom  O ,  ran  O
) )
3633, 34, 35sylancl 694 . . . . . . . . 9  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  O  Isom  _E  ,  _E  ( dom 
O ,  ran  O
) )
37 isof1o 6573 . . . . . . . . 9  |-  ( O 
Isom  _E  ,  _E  ( dom  O ,  ran  O )  ->  O : dom  O -1-1-onto-> ran  O )
3836, 37syl 17 . . . . . . . 8  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  O : dom  O -1-1-onto-> ran  O )
3915simprd 479 . . . . . . . . 9  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  ran  O  =  A )
40 f1oeq3 6129 . . . . . . . . 9  |-  ( ran 
O  =  A  -> 
( O : dom  O -1-1-onto-> ran 
O  <->  O : dom  O -1-1-onto-> A
) )
4139, 40syl 17 . . . . . . . 8  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  ( O : dom  O -1-1-onto-> ran  O  <->  O : dom  O -1-1-onto-> A ) )
4238, 41mpbid 222 . . . . . . 7  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  O : dom  O -1-1-onto-> A )
43 f1oen2g 7972 . . . . . . 7  |-  ( ( dom  O  e.  On  /\  A  e.  _V  /\  O : dom  O -1-1-onto-> A )  ->  dom  O  ~~  A )
4426, 5, 42, 43syl3anc 1326 . . . . . 6  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  ~~  A )
45 endom 7982 . . . . . 6  |-  ( dom 
O  ~~  A  ->  dom 
O  ~<_  A )
46 domwdom 8479 . . . . . 6  |-  ( dom 
O  ~<_  A  ->  dom  O  ~<_*  A )
4744, 45, 463syl 18 . . . . 5  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  ~<_*  A
)
48 wdomtr 8480 . . . . 5  |-  ( ( dom  O  ~<_*  A  /\  A  ~<_*  B
)  ->  dom  O  ~<_*  B
)
4947, 48sylancom 701 . . . 4  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  ~<_*  B
)
50 wdompwdom 8483 . . . 4  |-  ( dom 
O  ~<_*  B  ->  ~P dom  O  ~<_  ~P B )
5149, 50syl 17 . . 3  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  ~P dom  O  ~<_  ~P B )
52 domtr 8009 . . 3  |-  ( ( dom  O  ~<_  ~P dom  O  /\  ~P dom  O  ~<_  ~P B )  ->  dom  O  ~<_  ~P B )
5329, 51, 52syl2anc 693 . 2  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  ~<_  ~P B )
54 elharval 8468 . 2  |-  ( dom 
O  e.  (har `  ~P B )  <->  ( dom  O  e.  On  /\  dom  O  ~<_  ~P B ) )
5526, 53, 54sylanbrc 698 1  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  e.  (har `  ~P B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    _E cep 5028   Se wse 5071    We wwe 5072   dom cdm 5114   ran crn 5115   Ord word 5722   Oncon0 5723   suc csuc 5725   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889   Smo wsmo 7442    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954  OrdIsocoi 8414  harchar 8461    ~<_* cwdom 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-smo 7443  df-recs 7468  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-oi 8415  df-har 8463  df-wdom 8464
This theorem is referenced by:  hsmexlem2  9249  hsmexlem4  9251
  Copyright terms: Public domain W3C validator