MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthneq1eq2 Structured version   Visualization version   Unicode version

Theorem wspthneq1eq2 26745
Description: Two simple paths with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021.)
Assertion
Ref Expression
wspthneq1eq2  |-  ( ( P  e.  ( A ( N WSPathsNOn  G ) B )  /\  P  e.  ( C ( N WSPathsNOn  G ) D ) )  ->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem wspthneq1eq2
Dummy variables  f  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  (Vtx `  G )  =  (Vtx
`  G )
21wspthnonp 26744 . 2  |-  ( P  e.  ( A ( N WSPathsNOn  G ) B )  ->  ( ( N  e.  NN0  /\  G  e. 
_V )  /\  ( A  e.  (Vtx `  G
)  /\  B  e.  (Vtx `  G ) )  /\  ( P  e.  ( A ( N WWalksNOn  G ) B )  /\  E. f  f ( A (SPathsOn `  G
) B ) P ) ) )
31wspthnonp 26744 . 2  |-  ( P  e.  ( C ( N WSPathsNOn  G ) D )  ->  ( ( N  e.  NN0  /\  G  e. 
_V )  /\  ( C  e.  (Vtx `  G
)  /\  D  e.  (Vtx `  G ) )  /\  ( P  e.  ( C ( N WWalksNOn  G ) D )  /\  E. h  h ( C (SPathsOn `  G
) D ) P ) ) )
4 simp3r 1090 . . 3  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) )  /\  ( P  e.  ( A
( N WWalksNOn  G ) B )  /\  E. f 
f ( A (SPathsOn `  G ) B ) P ) )  ->  E. f  f ( A (SPathsOn `  G ) B ) P )
5 simp3r 1090 . . 3  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( C  e.  (Vtx
`  G )  /\  D  e.  (Vtx `  G
) )  /\  ( P  e.  ( C
( N WWalksNOn  G ) D )  /\  E. h  h ( C (SPathsOn `  G ) D ) P ) )  ->  E. h  h ( C (SPathsOn `  G ) D ) P )
6 spthonpthon 26647 . . . . . . . . . 10  |-  ( f ( A (SPathsOn `  G
) B ) P  ->  f ( A (PathsOn `  G ) B ) P )
7 spthonpthon 26647 . . . . . . . . . 10  |-  ( h ( C (SPathsOn `  G
) D ) P  ->  h ( C (PathsOn `  G ) D ) P )
86, 7anim12i 590 . . . . . . . . 9  |-  ( ( f ( A (SPathsOn `  G ) B ) P  /\  h ( C (SPathsOn `  G
) D ) P )  ->  ( f
( A (PathsOn `  G
) B ) P  /\  h ( C (PathsOn `  G ) D ) P ) )
9 pthontrlon 26643 . . . . . . . . . 10  |-  ( f ( A (PathsOn `  G
) B ) P  ->  f ( A (TrailsOn `  G ) B ) P )
10 pthontrlon 26643 . . . . . . . . . 10  |-  ( h ( C (PathsOn `  G
) D ) P  ->  h ( C (TrailsOn `  G ) D ) P )
11 trlsonwlkon 26606 . . . . . . . . . . 11  |-  ( f ( A (TrailsOn `  G
) B ) P  ->  f ( A (WalksOn `  G ) B ) P )
12 trlsonwlkon 26606 . . . . . . . . . . 11  |-  ( h ( C (TrailsOn `  G
) D ) P  ->  h ( C (WalksOn `  G ) D ) P )
1311, 12anim12i 590 . . . . . . . . . 10  |-  ( ( f ( A (TrailsOn `  G ) B ) P  /\  h ( C (TrailsOn `  G
) D ) P )  ->  ( f
( A (WalksOn `  G
) B ) P  /\  h ( C (WalksOn `  G ) D ) P ) )
149, 10, 13syl2an 494 . . . . . . . . 9  |-  ( ( f ( A (PathsOn `  G ) B ) P  /\  h ( C (PathsOn `  G
) D ) P )  ->  ( f
( A (WalksOn `  G
) B ) P  /\  h ( C (WalksOn `  G ) D ) P ) )
15 wlksoneq1eq2 26560 . . . . . . . . 9  |-  ( ( f ( A (WalksOn `  G ) B ) P  /\  h ( C (WalksOn `  G
) D ) P )  ->  ( A  =  C  /\  B  =  D ) )
168, 14, 153syl 18 . . . . . . . 8  |-  ( ( f ( A (SPathsOn `  G ) B ) P  /\  h ( C (SPathsOn `  G
) D ) P )  ->  ( A  =  C  /\  B  =  D ) )
1716expcom 451 . . . . . . 7  |-  ( h ( C (SPathsOn `  G
) D ) P  ->  ( f ( A (SPathsOn `  G
) B ) P  ->  ( A  =  C  /\  B  =  D ) ) )
1817exlimiv 1858 . . . . . 6  |-  ( E. h  h ( C (SPathsOn `  G ) D ) P  -> 
( f ( A (SPathsOn `  G ) B ) P  -> 
( A  =  C  /\  B  =  D ) ) )
1918com12 32 . . . . 5  |-  ( f ( A (SPathsOn `  G
) B ) P  ->  ( E. h  h ( C (SPathsOn `  G ) D ) P  ->  ( A  =  C  /\  B  =  D ) ) )
2019exlimiv 1858 . . . 4  |-  ( E. f  f ( A (SPathsOn `  G ) B ) P  -> 
( E. h  h ( C (SPathsOn `  G
) D ) P  ->  ( A  =  C  /\  B  =  D ) ) )
2120imp 445 . . 3  |-  ( ( E. f  f ( A (SPathsOn `  G
) B ) P  /\  E. h  h ( C (SPathsOn `  G
) D ) P )  ->  ( A  =  C  /\  B  =  D ) )
224, 5, 21syl2an 494 . 2  |-  ( ( ( ( N  e. 
NN0  /\  G  e.  _V )  /\  ( A  e.  (Vtx `  G
)  /\  B  e.  (Vtx `  G ) )  /\  ( P  e.  ( A ( N WWalksNOn  G ) B )  /\  E. f  f ( A (SPathsOn `  G
) B ) P ) )  /\  (
( N  e.  NN0  /\  G  e.  _V )  /\  ( C  e.  (Vtx
`  G )  /\  D  e.  (Vtx `  G
) )  /\  ( P  e.  ( C
( N WWalksNOn  G ) D )  /\  E. h  h ( C (SPathsOn `  G ) D ) P ) ) )  ->  ( A  =  C  /\  B  =  D ) )
232, 3, 22syl2an 494 1  |-  ( ( P  e.  ( A ( N WSPathsNOn  G ) B )  /\  P  e.  ( C ( N WSPathsNOn  G ) D ) )  ->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   NN0cn0 11292  Vtxcvtx 25874  WalksOncwlkson 26493  TrailsOnctrlson 26588  PathsOncpthson 26610  SPathsOncspthson 26611   WWalksNOn cwwlksnon 26719   WSPathsNOn cwwspthsnon 26721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-pthson 26614  df-spthson 26615  df-wwlksnon 26724  df-wspthsnon 26726
This theorem is referenced by:  2wspdisj  26855  2wspiundisj  26856
  Copyright terms: Public domain W3C validator