MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2ons3 Structured version   Visualization version   Unicode version

Theorem elwwlks2ons3 26848
Description: For each walk of length 2 between two vertices, there is a third vertex in the middle of the walk. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.)
Hypothesis
Ref Expression
elwwlks2ons3.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
elwwlks2ons3  |-  ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V )  ->  ( W  e.  ( A ( 2 WWalksNOn  G
) C )  <->  E. b  e.  V  ( W  =  <" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WWalksNOn  G ) C ) ) ) )
Distinct variable groups:    A, b    C, b    G, b    U, b    V, b    W, b

Proof of Theorem elwwlks2ons3
StepHypRef Expression
1 simpr 477 . . . . 5  |-  ( ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V
)  /\  W  e.  ( A ( 2 WWalksNOn  G
) C ) )  ->  W  e.  ( A ( 2 WWalksNOn  G
) C ) )
2 elwwlks2ons3.v . . . . . . . . 9  |-  V  =  (Vtx `  G )
32wwlknon 26742 . . . . . . . 8  |-  ( ( A  e.  V  /\  C  e.  V )  ->  ( W  e.  ( A ( 2 WWalksNOn  G
) C )  <->  ( W  e.  ( 2 WWalksN  G )  /\  ( W ` 
0 )  =  A  /\  ( W ` 
2 )  =  C ) ) )
433adant1 1079 . . . . . . 7  |-  ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V )  ->  ( W  e.  ( A ( 2 WWalksNOn  G
) C )  <->  ( W  e.  ( 2 WWalksN  G )  /\  ( W ` 
0 )  =  A  /\  ( W ` 
2 )  =  C ) ) )
5 wwlknbp2 26752 . . . . . . . . . 10  |-  ( W  e.  ( 2 WWalksN  G
)  ->  ( W  e. Word  (Vtx `  G )  /\  ( # `  W
)  =  ( 2  +  1 ) ) )
6 2p1e3 11151 . . . . . . . . . . . 12  |-  ( 2  +  1 )  =  3
76eqeq2i 2634 . . . . . . . . . . 11  |-  ( (
# `  W )  =  ( 2  +  1 )  <->  ( # `  W
)  =  3 )
8 1ex 10035 . . . . . . . . . . . . . . . . 17  |-  1  e.  _V
98tpid2 4304 . . . . . . . . . . . . . . . 16  |-  1  e.  { 0 ,  1 ,  2 }
10 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  W )  =  3  ->  (
0..^ ( # `  W
) )  =  ( 0..^ 3 ) )
11 fzo0to3tp 12554 . . . . . . . . . . . . . . . . 17  |-  ( 0..^ 3 )  =  {
0 ,  1 ,  2 }
1210, 11syl6eq 2672 . . . . . . . . . . . . . . . 16  |-  ( (
# `  W )  =  3  ->  (
0..^ ( # `  W
) )  =  {
0 ,  1 ,  2 } )
139, 12syl5eleqr 2708 . . . . . . . . . . . . . . 15  |-  ( (
# `  W )  =  3  ->  1  e.  ( 0..^ ( # `  W ) ) )
14 wrdsymbcl 13318 . . . . . . . . . . . . . . 15  |-  ( ( W  e. Word  (Vtx `  G )  /\  1  e.  ( 0..^ ( # `  W ) ) )  ->  ( W ` 
1 )  e.  (Vtx
`  G ) )
1513, 14sylan2 491 . . . . . . . . . . . . . 14  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  3 )  ->  ( W `  1 )  e.  (Vtx `  G )
)
16153ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  3 )  /\  (
( W `  0
)  =  A  /\  ( W `  2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V
) )  ->  ( W `  1 )  e.  (Vtx `  G )
)
17 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  3 )  ->  ( # `
 W )  =  3 )
18173ad2ant1 1082 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  3 )  /\  (
( W `  0
)  =  A  /\  ( W `  2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V
) )  ->  ( # `
 W )  =  3 )
1918adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  3 )  /\  ( ( W `
 0 )  =  A  /\  ( W `
 2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V )
)  /\  ( W `  1 )  e.  (Vtx `  G )
)  ->  ( # `  W
)  =  3 )
20 simpl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( W `  0
)  =  A  /\  ( W `  2 )  =  C )  -> 
( W `  0
)  =  A )
21 eqidd 2623 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( W `  0
)  =  A  /\  ( W `  2 )  =  C )  -> 
( W `  1
)  =  ( W `
 1 ) )
22 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( W `  0
)  =  A  /\  ( W `  2 )  =  C )  -> 
( W `  2
)  =  C )
2320, 21, 223jca 1242 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W `  0
)  =  A  /\  ( W `  2 )  =  C )  -> 
( ( W ` 
0 )  =  A  /\  ( W ` 
1 )  =  ( W `  1 )  /\  ( W ` 
2 )  =  C ) )
24233ad2ant2 1083 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  3 )  /\  (
( W `  0
)  =  A  /\  ( W `  2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V
) )  ->  (
( W `  0
)  =  A  /\  ( W `  1 )  =  ( W ` 
1 )  /\  ( W `  2 )  =  C ) )
2524adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  3 )  /\  ( ( W `
 0 )  =  A  /\  ( W `
 2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V )
)  /\  ( W `  1 )  e.  (Vtx `  G )
)  ->  ( ( W `  0 )  =  A  /\  ( W `  1 )  =  ( W ` 
1 )  /\  ( W `  2 )  =  C ) )
262eqcomi 2631 . . . . . . . . . . . . . . . . . . . . . 22  |-  (Vtx `  G )  =  V
2726wrdeqi 13328 . . . . . . . . . . . . . . . . . . . . 21  |- Word  (Vtx `  G )  = Word  V
2827eleq2i 2693 . . . . . . . . . . . . . . . . . . . 20  |-  ( W  e. Word  (Vtx `  G
)  <->  W  e. Word  V )
2928biimpi 206 . . . . . . . . . . . . . . . . . . 19  |-  ( W  e. Word  (Vtx `  G
)  ->  W  e. Word  V )
3029adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  3 )  ->  W  e. Word  V )
31303ad2ant1 1082 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  3 )  /\  (
( W `  0
)  =  A  /\  ( W `  2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V
) )  ->  W  e. Word  V )
3231adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  3 )  /\  ( ( W `
 0 )  =  A  /\  ( W `
 2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V )
)  /\  ( W `  1 )  e.  (Vtx `  G )
)  ->  W  e. Word  V )
33 simpl32 1143 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  3 )  /\  ( ( W `
 0 )  =  A  /\  ( W `
 2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V )
)  /\  ( W `  1 )  e.  (Vtx `  G )
)  ->  A  e.  V )
3426eleq2i 2693 . . . . . . . . . . . . . . . . . 18  |-  ( ( W `  1 )  e.  (Vtx `  G
)  <->  ( W ` 
1 )  e.  V
)
3534biimpi 206 . . . . . . . . . . . . . . . . 17  |-  ( ( W `  1 )  e.  (Vtx `  G
)  ->  ( W `  1 )  e.  V )
3635adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  3 )  /\  ( ( W `
 0 )  =  A  /\  ( W `
 2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V )
)  /\  ( W `  1 )  e.  (Vtx `  G )
)  ->  ( W `  1 )  e.  V )
37 simpl33 1144 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  3 )  /\  ( ( W `
 0 )  =  A  /\  ( W `
 2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V )
)  /\  ( W `  1 )  e.  (Vtx `  G )
)  ->  C  e.  V )
38 eqwrds3 13704 . . . . . . . . . . . . . . . 16  |-  ( ( W  e. Word  V  /\  ( A  e.  V  /\  ( W `  1
)  e.  V  /\  C  e.  V )
)  ->  ( W  =  <" A ( W `  1 ) C ">  <->  ( ( # `
 W )  =  3  /\  ( ( W `  0 )  =  A  /\  ( W `  1 )  =  ( W ` 
1 )  /\  ( W `  2 )  =  C ) ) ) )
3932, 33, 36, 37, 38syl13anc 1328 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  3 )  /\  ( ( W `
 0 )  =  A  /\  ( W `
 2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V )
)  /\  ( W `  1 )  e.  (Vtx `  G )
)  ->  ( W  =  <" A ( W `  1 ) C ">  <->  ( ( # `
 W )  =  3  /\  ( ( W `  0 )  =  A  /\  ( W `  1 )  =  ( W ` 
1 )  /\  ( W `  2 )  =  C ) ) ) )
4019, 25, 39mpbir2and 957 . . . . . . . . . . . . . 14  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  3 )  /\  ( ( W `
 0 )  =  A  /\  ( W `
 2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V )
)  /\  ( W `  1 )  e.  (Vtx `  G )
)  ->  W  =  <" A ( W `
 1 ) C "> )
4140, 36jca 554 . . . . . . . . . . . . 13  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  3 )  /\  ( ( W `
 0 )  =  A  /\  ( W `
 2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V )
)  /\  ( W `  1 )  e.  (Vtx `  G )
)  ->  ( W  =  <" A ( W `  1 ) C ">  /\  ( W `  1 )  e.  V ) )
4216, 41mpdan 702 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  3 )  /\  (
( W `  0
)  =  A  /\  ( W `  2 )  =  C )  /\  ( G  e.  U  /\  A  e.  V  /\  C  e.  V
) )  ->  ( W  =  <" A
( W `  1
) C ">  /\  ( W `  1
)  e.  V ) )
43423exp 1264 . . . . . . . . . . 11  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  3 )  ->  (
( ( W ` 
0 )  =  A  /\  ( W ` 
2 )  =  C )  ->  ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V )  ->  ( W  =  <" A ( W ` 
1 ) C ">  /\  ( W ` 
1 )  e.  V
) ) ) )
447, 43sylan2b 492 . . . . . . . . . 10  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( 2  +  1 ) )  ->  (
( ( W ` 
0 )  =  A  /\  ( W ` 
2 )  =  C )  ->  ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V )  ->  ( W  =  <" A ( W ` 
1 ) C ">  /\  ( W ` 
1 )  e.  V
) ) ) )
455, 44syl 17 . . . . . . . . 9  |-  ( W  e.  ( 2 WWalksN  G
)  ->  ( (
( W `  0
)  =  A  /\  ( W `  2 )  =  C )  -> 
( ( G  e.  U  /\  A  e.  V  /\  C  e.  V )  ->  ( W  =  <" A
( W `  1
) C ">  /\  ( W `  1
)  e.  V ) ) ) )
46453impib 1262 . . . . . . . 8  |-  ( ( W  e.  ( 2 WWalksN  G )  /\  ( W `  0 )  =  A  /\  ( W `  2 )  =  C )  ->  (
( G  e.  U  /\  A  e.  V  /\  C  e.  V
)  ->  ( W  =  <" A ( W `  1 ) C ">  /\  ( W `  1 )  e.  V ) ) )
4746com12 32 . . . . . . 7  |-  ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V )  ->  ( ( W  e.  ( 2 WWalksN  G )  /\  ( W ` 
0 )  =  A  /\  ( W ` 
2 )  =  C )  ->  ( W  =  <" A ( W `  1 ) C ">  /\  ( W `  1 )  e.  V ) ) )
484, 47sylbid 230 . . . . . 6  |-  ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V )  ->  ( W  e.  ( A ( 2 WWalksNOn  G
) C )  -> 
( W  =  <" A ( W ` 
1 ) C ">  /\  ( W ` 
1 )  e.  V
) ) )
4948imp 445 . . . . 5  |-  ( ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V
)  /\  W  e.  ( A ( 2 WWalksNOn  G
) C ) )  ->  ( W  = 
<" A ( W `
 1 ) C ">  /\  ( W `  1 )  e.  V ) )
50 anass 681 . . . . 5  |-  ( ( ( W  e.  ( A ( 2 WWalksNOn  G
) C )  /\  W  =  <" A
( W `  1
) C "> )  /\  ( W ` 
1 )  e.  V
)  <->  ( W  e.  ( A ( 2 WWalksNOn  G ) C )  /\  ( W  = 
<" A ( W `
 1 ) C ">  /\  ( W `  1 )  e.  V ) ) )
511, 49, 50sylanbrc 698 . . . 4  |-  ( ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V
)  /\  W  e.  ( A ( 2 WWalksNOn  G
) C ) )  ->  ( ( W  e.  ( A ( 2 WWalksNOn  G ) C )  /\  W  =  <" A ( W ` 
1 ) C "> )  /\  ( W `  1 )  e.  V ) )
52 simpr 477 . . . . 5  |-  ( ( ( W  e.  ( A ( 2 WWalksNOn  G
) C )  /\  W  =  <" A
( W `  1
) C "> )  /\  ( W ` 
1 )  e.  V
)  ->  ( W `  1 )  e.  V )
53 eqidd 2623 . . . . . . . 8  |-  ( b  =  ( W ` 
1 )  ->  A  =  A )
54 id 22 . . . . . . . 8  |-  ( b  =  ( W ` 
1 )  ->  b  =  ( W ` 
1 ) )
55 eqidd 2623 . . . . . . . 8  |-  ( b  =  ( W ` 
1 )  ->  C  =  C )
5653, 54, 55s3eqd 13609 . . . . . . 7  |-  ( b  =  ( W ` 
1 )  ->  <" A
b C ">  =  <" A ( W `  1 ) C "> )
57 eqeq2 2633 . . . . . . . 8  |-  ( <" A b C ">  =  <" A ( W ` 
1 ) C ">  ->  ( W  = 
<" A b C ">  <->  W  =  <" A ( W `
 1 ) C "> ) )
58 eleq1 2689 . . . . . . . 8  |-  ( <" A b C ">  =  <" A ( W ` 
1 ) C ">  ->  ( <" A
b C ">  e.  ( A ( 2 WWalksNOn  G ) C )  <->  <" A ( W `
 1 ) C ">  e.  ( A ( 2 WWalksNOn  G
) C ) ) )
5957, 58anbi12d 747 . . . . . . 7  |-  ( <" A b C ">  =  <" A ( W ` 
1 ) C ">  ->  ( ( W  =  <" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WWalksNOn  G ) C ) )  <->  ( W  = 
<" A ( W `
 1 ) C ">  /\  <" A ( W ` 
1 ) C ">  e.  ( A ( 2 WWalksNOn  G ) C ) ) ) )
6056, 59syl 17 . . . . . 6  |-  ( b  =  ( W ` 
1 )  ->  (
( W  =  <" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WWalksNOn  G
) C ) )  <-> 
( W  =  <" A ( W ` 
1 ) C ">  /\  <" A ( W `  1 ) C ">  e.  ( A ( 2 WWalksNOn  G
) C ) ) ) )
6160adantl 482 . . . . 5  |-  ( ( ( ( W  e.  ( A ( 2 WWalksNOn  G ) C )  /\  W  =  <" A ( W ` 
1 ) C "> )  /\  ( W `  1 )  e.  V )  /\  b  =  ( W ` 
1 ) )  -> 
( ( W  = 
<" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WWalksNOn  G ) C ) )  <->  ( W  = 
<" A ( W `
 1 ) C ">  /\  <" A ( W ` 
1 ) C ">  e.  ( A ( 2 WWalksNOn  G ) C ) ) ) )
62 simpr 477 . . . . . . 7  |-  ( ( W  e.  ( A ( 2 WWalksNOn  G ) C )  /\  W  =  <" A ( W `  1 ) C "> )  ->  W  =  <" A
( W `  1
) C "> )
63 eleq1 2689 . . . . . . . 8  |-  ( W  =  <" A ( W `  1 ) C ">  ->  ( W  e.  ( A ( 2 WWalksNOn  G ) C )  <->  <" A
( W `  1
) C ">  e.  ( A ( 2 WWalksNOn  G ) C ) ) )
6463biimpac 503 . . . . . . 7  |-  ( ( W  e.  ( A ( 2 WWalksNOn  G ) C )  /\  W  =  <" A ( W `  1 ) C "> )  ->  <" A ( W `  1 ) C ">  e.  ( A ( 2 WWalksNOn  G
) C ) )
6562, 64jca 554 . . . . . 6  |-  ( ( W  e.  ( A ( 2 WWalksNOn  G ) C )  /\  W  =  <" A ( W `  1 ) C "> )  ->  ( W  =  <" A ( W ` 
1 ) C ">  /\  <" A ( W `  1 ) C ">  e.  ( A ( 2 WWalksNOn  G
) C ) ) )
6665adantr 481 . . . . 5  |-  ( ( ( W  e.  ( A ( 2 WWalksNOn  G
) C )  /\  W  =  <" A
( W `  1
) C "> )  /\  ( W ` 
1 )  e.  V
)  ->  ( W  =  <" A ( W `  1 ) C ">  /\  <" A ( W ` 
1 ) C ">  e.  ( A ( 2 WWalksNOn  G ) C ) ) )
6752, 61, 66rspcedvd 3317 . . . 4  |-  ( ( ( W  e.  ( A ( 2 WWalksNOn  G
) C )  /\  W  =  <" A
( W `  1
) C "> )  /\  ( W ` 
1 )  e.  V
)  ->  E. b  e.  V  ( W  =  <" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WWalksNOn  G ) C ) ) )
6851, 67syl 17 . . 3  |-  ( ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V
)  /\  W  e.  ( A ( 2 WWalksNOn  G
) C ) )  ->  E. b  e.  V  ( W  =  <" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WWalksNOn  G
) C ) ) )
6968ex 450 . 2  |-  ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V )  ->  ( W  e.  ( A ( 2 WWalksNOn  G
) C )  ->  E. b  e.  V  ( W  =  <" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WWalksNOn  G
) C ) ) ) )
70 eleq1 2689 . . . . . 6  |-  ( <" A b C ">  =  W  ->  ( <" A
b C ">  e.  ( A ( 2 WWalksNOn  G ) C )  <-> 
W  e.  ( A ( 2 WWalksNOn  G ) C ) ) )
7170eqcoms 2630 . . . . 5  |-  ( W  =  <" A b C ">  ->  (
<" A b C ">  e.  ( A ( 2 WWalksNOn  G
) C )  <->  W  e.  ( A ( 2 WWalksNOn  G
) C ) ) )
7271biimpa 501 . . . 4  |-  ( ( W  =  <" A
b C ">  /\ 
<" A b C ">  e.  ( A ( 2 WWalksNOn  G
) C ) )  ->  W  e.  ( A ( 2 WWalksNOn  G
) C ) )
7372a1i 11 . . 3  |-  ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V )  ->  ( ( W  = 
<" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WWalksNOn  G ) C ) )  ->  W  e.  ( A ( 2 WWalksNOn  G
) C ) ) )
7473rexlimdvw 3034 . 2  |-  ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V )  ->  ( E. b  e.  V  ( W  = 
<" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WWalksNOn  G ) C ) )  ->  W  e.  ( A ( 2 WWalksNOn  G
) C ) ) )
7569, 74impbid 202 1  |-  ( ( G  e.  U  /\  A  e.  V  /\  C  e.  V )  ->  ( W  e.  ( A ( 2 WWalksNOn  G
) C )  <->  E. b  e.  V  ( W  =  <" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WWalksNOn  G ) C ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {ctp 4181   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   3c3 11071  ..^cfzo 12465   #chash 13117  Word cword 13291   <"cs3 13587  Vtxcvtx 25874   WWalksN cwwlksn 26718   WWalksNOn cwwlksnon 26719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724
This theorem is referenced by:  elwwlks2on  26852  frgr2wwlk1  27193
  Copyright terms: Public domain W3C validator