Proof of Theorem wwlksnwwlksnon
| Step | Hyp | Ref
| Expression |
| 1 | | wwlknbp2 26752 |
. . . . . 6
  WWalksN 
 Word Vtx           |
| 2 | 1 | adantl 482 |
. . . . 5
     WWalksN    Word Vtx           |
| 3 | | wwlksnwwlksnon.v |
. . . . . . . . . . . 12
Vtx   |
| 4 | 3 | eqcomi 2631 |
. . . . . . . . . . 11
Vtx   |
| 5 | 4 | wrdeqi 13328 |
. . . . . . . . . 10
Word Vtx  Word  |
| 6 | 5 | eleq2i 2693 |
. . . . . . . . 9
 Word Vtx 
Word   |
| 7 | 6 | biimpi 206 |
. . . . . . . 8
 Word Vtx 
Word   |
| 8 | 7 | adantr 481 |
. . . . . . 7
  Word Vtx         Word   |
| 9 | | nn0p1nn 11332 |
. . . . . . . . . 10

    |
| 10 | | lbfzo0 12507 |
. . . . . . . . . 10
  ..^       |
| 11 | 9, 10 | sylibr 224 |
. . . . . . . . 9

 ..^     |
| 12 | 11 | ad3antrrr 766 |
. . . . . . . 8
   
  WWalksN
 
 Word Vtx         
 ..^     |
| 13 | | oveq2 6658 |
. . . . . . . . . 10
        ..^      ..^     |
| 14 | 13 | eleq2d 2687 |
. . . . . . . . 9
         ..^    
 ..^      |
| 15 | 14 | ad2antll 765 |
. . . . . . . 8
   
  WWalksN
 
 Word Vtx         
  ..^      ..^      |
| 16 | 12, 15 | mpbird 247 |
. . . . . . 7
   
  WWalksN
 
 Word Vtx         
 ..^       |
| 17 | | wrdsymbcl 13318 |
. . . . . . 7
  Word
 ..^            |
| 18 | 8, 16, 17 | syl2an2 875 |
. . . . . 6
   
  WWalksN
 
 Word Vtx         
      |
| 19 | | fzonn0p1 12544 |
. . . . . . . . 9

 ..^     |
| 20 | 19 | ad3antrrr 766 |
. . . . . . . 8
   
  WWalksN
 
 Word Vtx         
 ..^     |
| 21 | 13 | eleq2d 2687 |
. . . . . . . . 9
       
 ..^    
 ..^      |
| 22 | 21 | ad2antll 765 |
. . . . . . . 8
   
  WWalksN
 
 Word Vtx         
  ..^    
 ..^      |
| 23 | 20, 22 | mpbird 247 |
. . . . . . 7
   
  WWalksN
 
 Word Vtx         
 ..^       |
| 24 | | wrdsymbcl 13318 |
. . . . . . 7
  Word
 ..^            |
| 25 | 8, 23, 24 | syl2an2 875 |
. . . . . 6
   
  WWalksN
 
 Word Vtx         
      |
| 26 | | simplr 792 |
. . . . . 6
   
  WWalksN
 
 Word Vtx         

WWalksN    |
| 27 | | eqidd 2623 |
. . . . . 6
   
  WWalksN
 
 Word Vtx         
          |
| 28 | | eqidd 2623 |
. . . . . 6
   
  WWalksN
 
 Word Vtx         
          |
| 29 | | eqeq2 2633 |
. . . . . . . 8
         
           |
| 30 | 29 | 3anbi2d 1404 |
. . . . . . 7
        WWalksN     
    
  WWalksN
                 |
| 31 | | eqeq2 2633 |
. . . . . . . 8
         
           |
| 32 | 31 | 3anbi3d 1405 |
. . . . . . 7
        WWalksN              
  WWalksN
                     |
| 33 | 30, 32 | rspc2ev 3324 |
. . . . . 6
          
 WWalksN         
          

  WWalksN
            |
| 34 | 18, 25, 26, 27, 28, 33 | syl113anc 1338 |
. . . . 5
   
  WWalksN
 
 Word Vtx         


  WWalksN
            |
| 35 | 2, 34 | mpdan 702 |
. . . 4
     WWalksN   


 WWalksN     
       |
| 36 | 35 | ex 450 |
. . 3
 
   WWalksN  

  WWalksN
             |
| 37 | | simp1 1061 |
. . . . 5
   WWalksN     
    
 WWalksN    |
| 38 | 37 | a1i 11 |
. . . 4
          WWalksN
         
 WWalksN     |
| 39 | 38 | rexlimdvva 3038 |
. . 3
 
      WWalksN
         
 WWalksN     |
| 40 | 36, 39 | impbid 202 |
. 2
 
   WWalksN 


  WWalksN
             |
| 41 | 3 | wwlknon 26742 |
. . . . 5
 
     WWalksNOn   
  WWalksN
             |
| 42 | 41 | bicomd 213 |
. . . 4
 
    WWalksN
         
   WWalksNOn       |
| 43 | 42 | adantl 482 |
. . 3
          WWalksN
         
   WWalksNOn       |
| 44 | 43 | 2rexbidva 3056 |
. 2
 
      WWalksN
         


   WWalksNOn       |
| 45 | 40, 44 | bitrd 268 |
1
 
   WWalksN 


   WWalksNOn       |