MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadd4d Structured version   Visualization version   Unicode version

Theorem xadd4d 12133
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 10264. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Hypotheses
Ref Expression
xadd4d.1  |-  ( ph  ->  ( A  e.  RR*  /\  A  =/= -oo )
)
xadd4d.2  |-  ( ph  ->  ( B  e.  RR*  /\  B  =/= -oo )
)
xadd4d.3  |-  ( ph  ->  ( C  e.  RR*  /\  C  =/= -oo )
)
xadd4d.4  |-  ( ph  ->  ( D  e.  RR*  /\  D  =/= -oo )
)
Assertion
Ref Expression
xadd4d  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( ( A +e C ) +e ( B +e D ) ) )

Proof of Theorem xadd4d
StepHypRef Expression
1 xadd4d.3 . . . 4  |-  ( ph  ->  ( C  e.  RR*  /\  C  =/= -oo )
)
2 xadd4d.2 . . . 4  |-  ( ph  ->  ( B  e.  RR*  /\  B  =/= -oo )
)
3 xadd4d.4 . . . 4  |-  ( ph  ->  ( D  e.  RR*  /\  D  =/= -oo )
)
4 xaddass 12079 . . . 4  |-  ( ( ( C  e.  RR*  /\  C  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( ( C +e B ) +e D )  =  ( C +e ( B +e D ) ) )
51, 2, 3, 4syl3anc 1326 . . 3  |-  ( ph  ->  ( ( C +e B ) +e D )  =  ( C +e
( B +e
D ) ) )
65oveq2d 6666 . 2  |-  ( ph  ->  ( A +e
( ( C +e B ) +e D ) )  =  ( A +e ( C +e ( B +e D ) ) ) )
7 xadd4d.1 . . . 4  |-  ( ph  ->  ( A  e.  RR*  /\  A  =/= -oo )
)
81simpld 475 . . . . 5  |-  ( ph  ->  C  e.  RR* )
93simpld 475 . . . . 5  |-  ( ph  ->  D  e.  RR* )
108, 9xaddcld 12131 . . . 4  |-  ( ph  ->  ( C +e
D )  e.  RR* )
11 xaddnemnf 12067 . . . . 5  |-  ( ( ( C  e.  RR*  /\  C  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( C +e D )  =/= -oo )
121, 3, 11syl2anc 693 . . . 4  |-  ( ph  ->  ( C +e
D )  =/= -oo )
13 xaddass 12079 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( ( C +e D )  e. 
RR*  /\  ( C +e D )  =/= -oo ) )  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( A +e ( B +e ( C +e D ) ) ) )
147, 2, 10, 12, 13syl112anc 1330 . . 3  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( A +e ( B +e ( C +e D ) ) ) )
152simpld 475 . . . . . . 7  |-  ( ph  ->  B  e.  RR* )
16 xaddcom 12071 . . . . . . 7  |-  ( ( C  e.  RR*  /\  B  e.  RR* )  ->  ( C +e B )  =  ( B +e C ) )
178, 15, 16syl2anc 693 . . . . . 6  |-  ( ph  ->  ( C +e
B )  =  ( B +e C ) )
1817oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( C +e B ) +e D )  =  ( ( B +e C ) +e D ) )
19 xaddass 12079 . . . . . 6  |-  ( ( ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( ( B +e C ) +e D )  =  ( B +e ( C +e D ) ) )
202, 1, 3, 19syl3anc 1326 . . . . 5  |-  ( ph  ->  ( ( B +e C ) +e D )  =  ( B +e
( C +e
D ) ) )
2118, 20eqtr2d 2657 . . . 4  |-  ( ph  ->  ( B +e
( C +e
D ) )  =  ( ( C +e B ) +e D ) )
2221oveq2d 6666 . . 3  |-  ( ph  ->  ( A +e
( B +e
( C +e
D ) ) )  =  ( A +e ( ( C +e B ) +e D ) ) )
2314, 22eqtrd 2656 . 2  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( A +e ( ( C +e B ) +e D ) ) )
2415, 9xaddcld 12131 . . 3  |-  ( ph  ->  ( B +e
D )  e.  RR* )
25 xaddnemnf 12067 . . . 4  |-  ( ( ( B  e.  RR*  /\  B  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( B +e D )  =/= -oo )
262, 3, 25syl2anc 693 . . 3  |-  ( ph  ->  ( B +e
D )  =/= -oo )
27 xaddass 12079 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )  /\  ( ( B +e D )  e. 
RR*  /\  ( B +e D )  =/= -oo ) )  ->  ( ( A +e C ) +e ( B +e D ) )  =  ( A +e ( C +e ( B +e D ) ) ) )
287, 1, 24, 26, 27syl112anc 1330 . 2  |-  ( ph  ->  ( ( A +e C ) +e ( B +e D ) )  =  ( A +e ( C +e ( B +e D ) ) ) )
296, 23, 283eqtr4d 2666 1  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( ( A +e C ) +e ( B +e D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   -oocmnf 10072   RR*cxr 10073   +ecxad 11944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-xadd 11947
This theorem is referenced by:  xnn0add4d  12134
  Copyright terms: Public domain W3C validator