| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddass | Structured version Visualization version Unicode version | ||
| Description: Associativity of extended
real addition. The correct condition here is
"it is not the case that both |
| Ref | Expression |
|---|---|
| xaddass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 10026 |
. . . . . . . . . 10
| |
| 2 | recn 10026 |
. . . . . . . . . 10
| |
| 3 | recn 10026 |
. . . . . . . . . 10
| |
| 4 | addass 10023 |
. . . . . . . . . 10
| |
| 5 | 1, 2, 3, 4 | syl3an 1368 |
. . . . . . . . 9
|
| 6 | 5 | 3expa 1265 |
. . . . . . . 8
|
| 7 | readdcl 10019 |
. . . . . . . . 9
| |
| 8 | rexadd 12063 |
. . . . . . . . 9
| |
| 9 | 7, 8 | sylan 488 |
. . . . . . . 8
|
| 10 | readdcl 10019 |
. . . . . . . . . 10
| |
| 11 | rexadd 12063 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | sylan2 491 |
. . . . . . . . 9
|
| 13 | 12 | anassrs 680 |
. . . . . . . 8
|
| 14 | 6, 9, 13 | 3eqtr4d 2666 |
. . . . . . 7
|
| 15 | rexadd 12063 |
. . . . . . . . 9
| |
| 16 | 15 | adantr 481 |
. . . . . . . 8
|
| 17 | 16 | oveq1d 6665 |
. . . . . . 7
|
| 18 | rexadd 12063 |
. . . . . . . . 9
| |
| 19 | 18 | adantll 750 |
. . . . . . . 8
|
| 20 | 19 | oveq2d 6666 |
. . . . . . 7
|
| 21 | 14, 17, 20 | 3eqtr4d 2666 |
. . . . . 6
|
| 22 | 21 | adantll 750 |
. . . . 5
|
| 23 | oveq2 6658 |
. . . . . . . . 9
| |
| 24 | simp1l 1085 |
. . . . . . . . . . 11
| |
| 25 | simp2l 1087 |
. . . . . . . . . . 11
| |
| 26 | xaddcl 12070 |
. . . . . . . . . . 11
| |
| 27 | 24, 25, 26 | syl2anc 693 |
. . . . . . . . . 10
|
| 28 | xaddnemnf 12067 |
. . . . . . . . . . 11
| |
| 29 | 28 | 3adant3 1081 |
. . . . . . . . . 10
|
| 30 | xaddpnf1 12057 |
. . . . . . . . . 10
| |
| 31 | 27, 29, 30 | syl2anc 693 |
. . . . . . . . 9
|
| 32 | 23, 31 | sylan9eqr 2678 |
. . . . . . . 8
|
| 33 | xaddpnf1 12057 |
. . . . . . . . . 10
| |
| 34 | 33 | 3ad2ant1 1082 |
. . . . . . . . 9
|
| 35 | 34 | adantr 481 |
. . . . . . . 8
|
| 36 | 32, 35 | eqtr4d 2659 |
. . . . . . 7
|
| 37 | oveq2 6658 |
. . . . . . . . 9
| |
| 38 | xaddpnf1 12057 |
. . . . . . . . . 10
| |
| 39 | 38 | 3ad2ant2 1083 |
. . . . . . . . 9
|
| 40 | 37, 39 | sylan9eqr 2678 |
. . . . . . . 8
|
| 41 | 40 | oveq2d 6666 |
. . . . . . 7
|
| 42 | 36, 41 | eqtr4d 2659 |
. . . . . 6
|
| 43 | 42 | adantlr 751 |
. . . . 5
|
| 44 | simp3 1063 |
. . . . . . 7
| |
| 45 | xrnemnf 11951 |
. . . . . . 7
| |
| 46 | 44, 45 | sylib 208 |
. . . . . 6
|
| 47 | 46 | adantr 481 |
. . . . 5
|
| 48 | 22, 43, 47 | mpjaodan 827 |
. . . 4
|
| 49 | 48 | anassrs 680 |
. . 3
|
| 50 | xaddpnf2 12058 |
. . . . . . . 8
| |
| 51 | 50 | 3ad2ant3 1084 |
. . . . . . 7
|
| 52 | 51, 34 | eqtr4d 2659 |
. . . . . 6
|
| 53 | 52 | adantr 481 |
. . . . 5
|
| 54 | oveq2 6658 |
. . . . . . 7
| |
| 55 | 54, 34 | sylan9eqr 2678 |
. . . . . 6
|
| 56 | 55 | oveq1d 6665 |
. . . . 5
|
| 57 | oveq1 6657 |
. . . . . . 7
| |
| 58 | 57, 51 | sylan9eqr 2678 |
. . . . . 6
|
| 59 | 58 | oveq2d 6666 |
. . . . 5
|
| 60 | 53, 56, 59 | 3eqtr4d 2666 |
. . . 4
|
| 61 | 60 | adantlr 751 |
. . 3
|
| 62 | simpl2 1065 |
. . . 4
| |
| 63 | xrnemnf 11951 |
. . . 4
| |
| 64 | 62, 63 | sylib 208 |
. . 3
|
| 65 | 49, 61, 64 | mpjaodan 827 |
. 2
|
| 66 | simpl3 1066 |
. . . . 5
| |
| 67 | 66, 50 | syl 17 |
. . . 4
|
| 68 | simpl2l 1114 |
. . . . . 6
| |
| 69 | simpl3l 1116 |
. . . . . 6
| |
| 70 | xaddcl 12070 |
. . . . . 6
| |
| 71 | 68, 69, 70 | syl2anc 693 |
. . . . 5
|
| 72 | simpl2 1065 |
. . . . . 6
| |
| 73 | xaddnemnf 12067 |
. . . . . 6
| |
| 74 | 72, 66, 73 | syl2anc 693 |
. . . . 5
|
| 75 | xaddpnf2 12058 |
. . . . 5
| |
| 76 | 71, 74, 75 | syl2anc 693 |
. . . 4
|
| 77 | 67, 76 | eqtr4d 2659 |
. . 3
|
| 78 | simpr 477 |
. . . . . 6
| |
| 79 | 78 | oveq1d 6665 |
. . . . 5
|
| 80 | xaddpnf2 12058 |
. . . . . 6
| |
| 81 | 72, 80 | syl 17 |
. . . . 5
|
| 82 | 79, 81 | eqtrd 2656 |
. . . 4
|
| 83 | 82 | oveq1d 6665 |
. . 3
|
| 84 | 78 | oveq1d 6665 |
. . 3
|
| 85 | 77, 83, 84 | 3eqtr4d 2666 |
. 2
|
| 86 | simp1 1061 |
. . 3
| |
| 87 | xrnemnf 11951 |
. . 3
| |
| 88 | 86, 87 | sylib 208 |
. 2
|
| 89 | 65, 85, 88 | mpjaodan 827 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-addass 10001 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-xadd 11947 |
| This theorem is referenced by: xaddass2 12080 xpncan 12081 xadd4d 12133 xrs1mnd 19784 xlt2addrd 29523 xrge0addass 29690 xrge0npcan 29694 carsgclctunlem2 30381 caragenuncllem 40726 |
| Copyright terms: Public domain | W3C validator |