MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddass Structured version   Visualization version   Unicode version

Theorem xaddass 12079
Description: Associativity of extended real addition. The correct condition here is "it is not the case that both +oo and -oo appear as one of  A ,  B ,  C, i.e.  -.  { +oo , -oo }  C_  { A ,  B ,  C }", but this condition is difficult to work with, so we break the theorem into two parts: this one, where -oo is not present in  A ,  B ,  C, and xaddass2 12080, where +oo is not present. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )

Proof of Theorem xaddass
StepHypRef Expression
1 recn 10026 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
2 recn 10026 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  e.  CC )
3 recn 10026 . . . . . . . . . 10  |-  ( C  e.  RR  ->  C  e.  CC )
4 addass 10023 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
51, 2, 3, 4syl3an 1368 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
653expa 1265 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) ) )
7 readdcl 10019 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
8 rexadd 12063 . . . . . . . . 9  |-  ( ( ( A  +  B
)  e.  RR  /\  C  e.  RR )  ->  ( ( A  +  B ) +e
C )  =  ( ( A  +  B
)  +  C ) )
97, 8sylan 488 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A  +  B ) +e C )  =  ( ( A  +  B )  +  C
) )
10 readdcl 10019 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
11 rexadd 12063 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  ( A +e ( B  +  C ) )  =  ( A  +  ( B  +  C ) ) )
1210, 11sylan2 491 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( A +e ( B  +  C ) )  =  ( A  +  ( B  +  C
) ) )
1312anassrs 680 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A +e ( B  +  C ) )  =  ( A  +  ( B  +  C ) ) )
146, 9, 133eqtr4d 2666 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A  +  B ) +e C )  =  ( A +e
( B  +  C
) ) )
15 rexadd 12063 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
1615adantr 481 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A +e B )  =  ( A  +  B
) )
1716oveq1d 6665 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A +e B ) +e C )  =  ( ( A  +  B ) +e C ) )
18 rexadd 12063 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B +e
C )  =  ( B  +  C ) )
1918adantll 750 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( B +e C )  =  ( B  +  C
) )
2019oveq2d 6666 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A +e ( B +e C ) )  =  ( A +e ( B  +  C ) ) )
2114, 17, 203eqtr4d 2666 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
2221adantll 750 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  C  e.  RR )  ->  (
( A +e
B ) +e
C )  =  ( A +e ( B +e C ) ) )
23 oveq2 6658 . . . . . . . . 9  |-  ( C  = +oo  ->  (
( A +e
B ) +e
C )  =  ( ( A +e
B ) +e +oo ) )
24 simp1l 1085 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  A  e.  RR* )
25 simp2l 1087 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  B  e.  RR* )
26 xaddcl 12070 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
2724, 25, 26syl2anc 693 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( A +e B )  e.  RR* )
28 xaddnemnf 12067 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )
)  ->  ( A +e B )  =/= -oo )
29283adant3 1081 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( A +e B )  =/= -oo )
30 xaddpnf1 12057 . . . . . . . . . 10  |-  ( ( ( A +e
B )  e.  RR*  /\  ( A +e
B )  =/= -oo )  ->  ( ( A +e B ) +e +oo )  = +oo )
3127, 29, 30syl2anc 693 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( ( A +e B ) +e +oo )  = +oo )
3223, 31sylan9eqr 2678 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  C  = +oo )  ->  ( ( A +e B ) +e C )  = +oo )
33 xaddpnf1 12057 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
34333ad2ant1 1082 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( A +e +oo )  = +oo )
3534adantr 481 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  C  = +oo )  ->  ( A +e +oo )  = +oo )
3632, 35eqtr4d 2659 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  C  = +oo )  ->  ( ( A +e B ) +e C )  =  ( A +e +oo ) )
37 oveq2 6658 . . . . . . . . 9  |-  ( C  = +oo  ->  ( B +e C )  =  ( B +e +oo ) )
38 xaddpnf1 12057 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
39383ad2ant2 1083 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( B +e +oo )  = +oo )
4037, 39sylan9eqr 2678 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  C  = +oo )  ->  ( B +e
C )  = +oo )
4140oveq2d 6666 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  C  = +oo )  ->  ( A +e
( B +e
C ) )  =  ( A +e +oo ) )
4236, 41eqtr4d 2659 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  C  = +oo )  ->  ( ( A +e B ) +e C )  =  ( A +e
( B +e
C ) ) )
4342adantlr 751 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  C  = +oo )  ->  (
( A +e
B ) +e
C )  =  ( A +e ( B +e C ) ) )
44 simp3 1063 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( C  e.  RR*  /\  C  =/= -oo ) )
45 xrnemnf 11951 . . . . . . 7  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  <->  ( C  e.  RR  \/  C  = +oo ) )
4644, 45sylib 208 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( C  e.  RR  \/  C  = +oo ) )
4746adantr 481 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  ( A  e.  RR  /\  B  e.  RR ) )  ->  ( C  e.  RR  \/  C  = +oo ) )
4822, 43, 47mpjaodan 827 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  ( A  e.  RR  /\  B  e.  RR ) )  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
4948anassrs 680 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  e.  RR )  /\  B  e.  RR )  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
50 xaddpnf2 12058 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( +oo +e C )  = +oo )
51503ad2ant3 1084 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( +oo +e C )  = +oo )
5251, 34eqtr4d 2659 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( +oo +e C )  =  ( A +e +oo ) )
5352adantr 481 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  B  = +oo )  ->  ( +oo +e
C )  =  ( A +e +oo ) )
54 oveq2 6658 . . . . . . 7  |-  ( B  = +oo  ->  ( A +e B )  =  ( A +e +oo ) )
5554, 34sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  B  = +oo )  ->  ( A +e
B )  = +oo )
5655oveq1d 6665 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  B  = +oo )  ->  ( ( A +e B ) +e C )  =  ( +oo +e
C ) )
57 oveq1 6657 . . . . . . 7  |-  ( B  = +oo  ->  ( B +e C )  =  ( +oo +e C ) )
5857, 51sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  B  = +oo )  ->  ( B +e
C )  = +oo )
5958oveq2d 6666 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  B  = +oo )  ->  ( A +e
( B +e
C ) )  =  ( A +e +oo ) )
6053, 56, 593eqtr4d 2666 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  B  = +oo )  ->  ( ( A +e B ) +e C )  =  ( A +e
( B +e
C ) ) )
6160adantlr 751 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
62 simpl2 1065 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  e.  RR )  ->  ( B  e.  RR*  /\  B  =/= -oo )
)
63 xrnemnf 11951 . . . 4  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  <->  ( B  e.  RR  \/  B  = +oo ) )
6462, 63sylib 208 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  e.  RR )  ->  ( B  e.  RR  \/  B  = +oo ) )
6549, 61, 64mpjaodan 827 . 2  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  e.  RR )  ->  ( ( A +e B ) +e C )  =  ( A +e
( B +e
C ) ) )
66 simpl3 1066 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( C  e.  RR*  /\  C  =/= -oo )
)
6766, 50syl 17 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( +oo +e
C )  = +oo )
68 simpl2l 1114 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  B  e.  RR* )
69 simpl3l 1116 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  C  e.  RR* )
70 xaddcl 12070 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
7168, 69, 70syl2anc 693 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( B +e
C )  e.  RR* )
72 simpl2 1065 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( B  e.  RR*  /\  B  =/= -oo )
)
73 xaddnemnf 12067 . . . . . 6  |-  ( ( ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( B +e C )  =/= -oo )
7472, 66, 73syl2anc 693 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( B +e
C )  =/= -oo )
75 xaddpnf2 12058 . . . . 5  |-  ( ( ( B +e
C )  e.  RR*  /\  ( B +e
C )  =/= -oo )  ->  ( +oo +e ( B +e C ) )  = +oo )
7671, 74, 75syl2anc 693 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( +oo +e
( B +e
C ) )  = +oo )
7767, 76eqtr4d 2659 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( +oo +e
C )  =  ( +oo +e ( B +e C ) ) )
78 simpr 477 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  A  = +oo )
7978oveq1d 6665 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( A +e
B )  =  ( +oo +e B ) )
80 xaddpnf2 12058 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
8172, 80syl 17 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( +oo +e
B )  = +oo )
8279, 81eqtrd 2656 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( A +e
B )  = +oo )
8382oveq1d 6665 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( ( A +e B ) +e C )  =  ( +oo +e
C ) )
8478oveq1d 6665 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( A +e
( B +e
C ) )  =  ( +oo +e
( B +e
C ) ) )
8577, 83, 843eqtr4d 2666 . 2  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( ( A +e B ) +e C )  =  ( A +e
( B +e
C ) ) )
86 simp1 1061 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( A  e.  RR*  /\  A  =/= -oo ) )
87 xrnemnf 11951 . . 3  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( A  e.  RR  \/  A  = +oo ) )
8886, 87sylib 208 . 2  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( A  e.  RR  \/  A  = +oo ) )
8965, 85, 88mpjaodan 827 1  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   RRcr 9935    + caddc 9939   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073   +ecxad 11944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-addass 10001  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-xadd 11947
This theorem is referenced by:  xaddass2  12080  xpncan  12081  xadd4d  12133  xrs1mnd  19784  xlt2addrd  29523  xrge0addass  29690  xrge0npcan  29694  carsgclctunlem2  30381  caragenuncllem  40726
  Copyright terms: Public domain W3C validator