MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpfir Structured version   Visualization version   Unicode version

Theorem xpfir 8182
Description: The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009.) (Proof shortened by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpfir  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  -> 
( A  e.  Fin  /\  B  e.  Fin )
)

Proof of Theorem xpfir
StepHypRef Expression
1 xpexr2 7107 . . . . 5  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  -> 
( A  e.  _V  /\  B  e.  _V )
)
21simpld 475 . . . 4  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  ->  A  e.  _V )
31simprd 479 . . . 4  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  ->  B  e.  _V )
4 simpr 477 . . . . . 6  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  -> 
( A  X.  B
)  =/=  (/) )
5 xpnz 5553 . . . . . 6  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  <->  ( A  X.  B )  =/=  (/) )
64, 5sylibr 224 . . . . 5  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  -> 
( A  =/=  (/)  /\  B  =/=  (/) ) )
76simprd 479 . . . 4  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  ->  B  =/=  (/) )
8 xpdom3 8058 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  B  =/=  (/) )  ->  A  ~<_  ( A  X.  B
) )
92, 3, 7, 8syl3anc 1326 . . 3  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  ->  A  ~<_  ( A  X.  B ) )
10 domfi 8181 . . 3  |-  ( ( ( A  X.  B
)  e.  Fin  /\  A  ~<_  ( A  X.  B ) )  ->  A  e.  Fin )
119, 10syldan 487 . 2  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  ->  A  e.  Fin )
126simpld 475 . . . . 5  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  ->  A  =/=  (/) )
13 xpdom3 8058 . . . . 5  |-  ( ( B  e.  _V  /\  A  e.  _V  /\  A  =/=  (/) )  ->  B  ~<_  ( B  X.  A
) )
143, 2, 12, 13syl3anc 1326 . . . 4  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  ->  B  ~<_  ( B  X.  A ) )
15 xpcomeng 8052 . . . . 5  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( B  X.  A
)  ~~  ( A  X.  B ) )
163, 2, 15syl2anc 693 . . . 4  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  -> 
( B  X.  A
)  ~~  ( A  X.  B ) )
17 domentr 8015 . . . 4  |-  ( ( B  ~<_  ( B  X.  A )  /\  ( B  X.  A )  ~~  ( A  X.  B
) )  ->  B  ~<_  ( A  X.  B
) )
1814, 16, 17syl2anc 693 . . 3  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  ->  B  ~<_  ( A  X.  B ) )
19 domfi 8181 . . 3  |-  ( ( ( A  X.  B
)  e.  Fin  /\  B  ~<_  ( A  X.  B ) )  ->  B  e.  Fin )
2018, 19syldan 487 . 2  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  ->  B  e.  Fin )
2111, 20jca 554 1  |-  ( ( ( A  X.  B
)  e.  Fin  /\  ( A  X.  B
)  =/=  (/) )  -> 
( A  e.  Fin  /\  B  e.  Fin )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   class class class wbr 4653    X. cxp 5112    ~~ cen 7952    ~<_ cdom 7953   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator