MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs2dif Structured version   Visualization version   GIF version

Theorem abs2dif 14072
Description: Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
abs2dif ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))

Proof of Theorem abs2dif
StepHypRef Expression
1 subid1 10301 . . . 4 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
21fveq2d 6195 . . 3 (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) = (abs‘𝐴))
3 subid1 10301 . . . 4 (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵)
43fveq2d 6195 . . 3 (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵))
52, 4oveqan12d 6669 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) = ((abs‘𝐴) − (abs‘𝐵)))
6 0cn 10032 . . . 4 0 ∈ ℂ
7 abs3dif 14071 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴𝐵)) + (abs‘(𝐵 − 0))))
86, 7mp3an2 1412 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴𝐵)) + (abs‘(𝐵 − 0))))
9 subcl 10280 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 − 0) ∈ ℂ)
106, 9mpan2 707 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 − 0) ∈ ℂ)
11 abscl 14018 . . . . . . 7 ((𝐴 − 0) ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ)
1210, 11syl 17 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ)
13 subcl 10280 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐵 − 0) ∈ ℂ)
146, 13mpan2 707 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 − 0) ∈ ℂ)
15 abscl 14018 . . . . . . 7 ((𝐵 − 0) ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ)
1614, 15syl 17 . . . . . 6 (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ)
1712, 16anim12i 590 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ))
18 subcl 10280 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
19 abscl 14018 . . . . . 6 ((𝐴𝐵) ∈ ℂ → (abs‘(𝐴𝐵)) ∈ ℝ)
2018, 19syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) ∈ ℝ)
21 df-3an 1039 . . . . 5 (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ) ↔ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ) ∧ (abs‘(𝐴𝐵)) ∈ ℝ))
2217, 20, 21sylanbrc 698 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ))
23 lesubadd 10500 . . . 4 (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴𝐵)) + (abs‘(𝐵 − 0)))))
2422, 23syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴𝐵)) + (abs‘(𝐵 − 0)))))
258, 24mpbird 247 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴𝐵)))
265, 25eqbrtrrd 4677 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939  cle 10075  cmin 10266  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  abs2difabs  14074  absrdbnd  14081  caubnd2  14097  abs2difd  14196  abelthlem2  24186  logfacbnd3  24948  log2sumbnd  25233  abs2difi  31576
  Copyright terms: Public domain W3C validator