![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abs3lemi | Structured version Visualization version GIF version |
Description: Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.) |
Ref | Expression |
---|---|
absvalsqi.1 | ⊢ 𝐴 ∈ ℂ |
abssub.2 | ⊢ 𝐵 ∈ ℂ |
abs3dif.3 | ⊢ 𝐶 ∈ ℂ |
abs3lem.4 | ⊢ 𝐷 ∈ ℝ |
Ref | Expression |
---|---|
abs3lemi | ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absvalsqi.1 | . . . 4 ⊢ 𝐴 ∈ ℂ | |
2 | abssub.2 | . . . 4 ⊢ 𝐵 ∈ ℂ | |
3 | abs3dif.3 | . . . 4 ⊢ 𝐶 ∈ ℂ | |
4 | 1, 2, 3 | abs3difi 14148 | . . 3 ⊢ (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) |
5 | 1, 3 | subcli 10357 | . . . . 5 ⊢ (𝐴 − 𝐶) ∈ ℂ |
6 | 5 | abscli 14134 | . . . 4 ⊢ (abs‘(𝐴 − 𝐶)) ∈ ℝ |
7 | 3, 2 | subcli 10357 | . . . . 5 ⊢ (𝐶 − 𝐵) ∈ ℂ |
8 | 7 | abscli 14134 | . . . 4 ⊢ (abs‘(𝐶 − 𝐵)) ∈ ℝ |
9 | abs3lem.4 | . . . . 5 ⊢ 𝐷 ∈ ℝ | |
10 | 9 | rehalfcli 11281 | . . . 4 ⊢ (𝐷 / 2) ∈ ℝ |
11 | 6, 8, 10, 10 | lt2addi 10590 | . . 3 ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) < ((𝐷 / 2) + (𝐷 / 2))) |
12 | 1, 2 | subcli 10357 | . . . . 5 ⊢ (𝐴 − 𝐵) ∈ ℂ |
13 | 12 | abscli 14134 | . . . 4 ⊢ (abs‘(𝐴 − 𝐵)) ∈ ℝ |
14 | 6, 8 | readdcli 10053 | . . . 4 ⊢ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) ∈ ℝ |
15 | 10, 10 | readdcli 10053 | . . . 4 ⊢ ((𝐷 / 2) + (𝐷 / 2)) ∈ ℝ |
16 | 13, 14, 15 | lelttri 10164 | . . 3 ⊢ (((abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) ∧ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) < ((𝐷 / 2) + (𝐷 / 2))) → (abs‘(𝐴 − 𝐵)) < ((𝐷 / 2) + (𝐷 / 2))) |
17 | 4, 11, 16 | sylancr 695 | . 2 ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < ((𝐷 / 2) + (𝐷 / 2))) |
18 | 10 | recni 10052 | . . . 4 ⊢ (𝐷 / 2) ∈ ℂ |
19 | 18 | 2timesi 11147 | . . 3 ⊢ (2 · (𝐷 / 2)) = ((𝐷 / 2) + (𝐷 / 2)) |
20 | 9 | recni 10052 | . . . 4 ⊢ 𝐷 ∈ ℂ |
21 | 2cn 11091 | . . . 4 ⊢ 2 ∈ ℂ | |
22 | 2ne0 11113 | . . . 4 ⊢ 2 ≠ 0 | |
23 | 20, 21, 22 | divcan2i 10768 | . . 3 ⊢ (2 · (𝐷 / 2)) = 𝐷 |
24 | 19, 23 | eqtr3i 2646 | . 2 ⊢ ((𝐷 / 2) + (𝐷 / 2)) = 𝐷 |
25 | 17, 24 | syl6breq 4694 | 1 ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 + caddc 9939 · cmul 9941 < clt 10074 ≤ cle 10075 − cmin 10266 / cdiv 10684 2c2 11070 abscabs 13974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |