![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alzdvds | Structured version Visualization version GIF version |
Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
alzdvds | ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssz 11397 | . . . . . . . 8 ⊢ ℕ ⊆ ℤ | |
2 | zcn 11382 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
3 | 2 | abscld 14175 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ) |
4 | arch 11289 | . . . . . . . . 9 ⊢ ((abs‘𝑁) ∈ ℝ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥) | |
5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥) |
6 | ssrexv 3667 | . . . . . . . 8 ⊢ (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥 → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥)) | |
7 | 1, 5, 6 | mpsyl 68 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥) |
8 | zre 11381 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
9 | ltnle 10117 | . . . . . . . . . 10 ⊢ (((abs‘𝑁) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁))) | |
10 | 3, 8, 9 | syl2an 494 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁))) |
11 | 10 | rexbidva 3049 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁))) |
12 | rexnal 2995 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁) ↔ ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) | |
13 | 11, 12 | syl6bb 276 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
14 | 7, 13 | mpbid 222 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) |
15 | 14 | adantl 482 | . . . . 5 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) |
16 | ralim 2948 | . . . . . . 7 ⊢ (∀𝑥 ∈ ℤ (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁)) → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) | |
17 | dvdsleabs 15033 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) | |
18 | 17 | 3expb 1266 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) |
19 | 18 | expcom 451 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∈ ℤ → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁)))) |
20 | 19 | ralrimiv 2965 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) |
21 | 16, 20 | syl11 33 | . . . . . 6 ⊢ (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
22 | 21 | expdimp 453 | . . . . 5 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → (𝑁 ≠ 0 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
23 | 15, 22 | mtod 189 | . . . 4 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬ 𝑁 ≠ 0) |
24 | nne 2798 | . . . 4 ⊢ (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0) | |
25 | 23, 24 | sylib 208 | . . 3 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → 𝑁 = 0) |
26 | 25 | expcom 451 | . 2 ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → 𝑁 = 0)) |
27 | dvds0 14997 | . . . 4 ⊢ (𝑥 ∈ ℤ → 𝑥 ∥ 0) | |
28 | breq2 4657 | . . . 4 ⊢ (𝑁 = 0 → (𝑥 ∥ 𝑁 ↔ 𝑥 ∥ 0)) | |
29 | 27, 28 | syl5ibr 236 | . . 3 ⊢ (𝑁 = 0 → (𝑥 ∈ ℤ → 𝑥 ∥ 𝑁)) |
30 | 29 | ralrimiv 2965 | . 2 ⊢ (𝑁 = 0 → ∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁) |
31 | 26, 30 | impbid1 215 | 1 ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 class class class wbr 4653 ‘cfv 5888 ℝcr 9935 0cc0 9936 < clt 10074 ≤ cle 10075 ℕcn 11020 ℤcz 11377 abscabs 13974 ∥ cdvds 14983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |