| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > baselcarsg | Structured version Visualization version GIF version | ||
| Description: The universe set, 𝑂, is Caratheodory measurable. (Contributed by Thierry Arnoux, 17-May-2020.) |
| Ref | Expression |
|---|---|
| carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| baselcarsg.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
| Ref | Expression |
|---|---|
| baselcarsg | ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3624 | . . . 4 ⊢ 𝑂 ⊆ 𝑂 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑂 ⊆ 𝑂) |
| 3 | elpwi 4168 | . . . . . . . . 9 ⊢ (𝑒 ∈ 𝒫 𝑂 → 𝑒 ⊆ 𝑂) | |
| 4 | 3 | adantl 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑒 ⊆ 𝑂) |
| 5 | df-ss 3588 | . . . . . . . 8 ⊢ (𝑒 ⊆ 𝑂 ↔ (𝑒 ∩ 𝑂) = 𝑒) | |
| 6 | 4, 5 | sylib 208 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ 𝑂) = 𝑒) |
| 7 | 6 | fveq2d 6195 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ 𝑂)) = (𝑀‘𝑒)) |
| 8 | ssdif0 3942 | . . . . . . . . 9 ⊢ (𝑒 ⊆ 𝑂 ↔ (𝑒 ∖ 𝑂) = ∅) | |
| 9 | 4, 8 | sylib 208 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ 𝑂) = ∅) |
| 10 | 9 | fveq2d 6195 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ 𝑂)) = (𝑀‘∅)) |
| 11 | baselcarsg.1 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘∅) = 0) | |
| 12 | 11 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘∅) = 0) |
| 13 | 10, 12 | eqtrd 2656 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ 𝑂)) = 0) |
| 14 | 7, 13 | oveq12d 6668 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = ((𝑀‘𝑒) +𝑒 0)) |
| 15 | iccssxr 12256 | . . . . . . 7 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 16 | carsgval.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
| 17 | 16 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| 18 | simpr 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂) | |
| 19 | 17, 18 | ffvelrnd 6360 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
| 20 | 15, 19 | sseldi 3601 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ ℝ*) |
| 21 | xaddid1 12072 | . . . . . 6 ⊢ ((𝑀‘𝑒) ∈ ℝ* → ((𝑀‘𝑒) +𝑒 0) = (𝑀‘𝑒)) | |
| 22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘𝑒) +𝑒 0) = (𝑀‘𝑒)) |
| 23 | 14, 22 | eqtrd 2656 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒)) |
| 24 | 23 | ralrimiva 2966 | . . 3 ⊢ (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒)) |
| 25 | 2, 24 | jca 554 | . 2 ⊢ (𝜑 → (𝑂 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒))) |
| 26 | carsgval.1 | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 27 | 26, 16 | elcarsg 30367 | . 2 ⊢ (𝜑 → (𝑂 ∈ (toCaraSiga‘𝑀) ↔ (𝑂 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒)))) |
| 28 | 25, 27 | mpbird 247 | 1 ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 0cc0 9936 +∞cpnf 10071 ℝ*cxr 10073 +𝑒 cxad 11944 [,]cicc 12178 toCaraSigaccarsg 30363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-xadd 11947 df-icc 12182 df-carsg 30364 |
| This theorem is referenced by: carsguni 30370 fiunelcarsg 30378 carsgsiga 30384 |
| Copyright terms: Public domain | W3C validator |