Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bhmafibid1 Structured version   Visualization version   GIF version

Theorem bhmafibid1 29644
Description: The Brahmagupta-Fibonacci identity. Express the product of two sums of two squares as a sum of two squares. First result. (Contributed by Thierry Arnoux, 1-Feb-2020.)
Assertion
Ref Expression
bhmafibid1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))

Proof of Theorem bhmafibid1
StepHypRef Expression
1 simpll 790 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
21recnd 10068 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℂ)
3 ax-icn 9995 . . . . . . . . . 10 i ∈ ℂ
43a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → i ∈ ℂ)
5 simplr 792 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ)
65recnd 10068 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℂ)
74, 6mulcld 10060 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐵) ∈ ℂ)
82, 7addcld 10059 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 + (i · 𝐵)) ∈ ℂ)
9 simprl 794 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ)
109recnd 10068 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℂ)
11 simprr 796 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
1211recnd 10068 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℂ)
134, 12mulcld 10060 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐷) ∈ ℂ)
1410, 13addcld 10059 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + (i · 𝐷)) ∈ ℂ)
158, 14mulcld 10060 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℂ)
1615replimd 13937 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) + (i · (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))))))
178, 14remuld 13958 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (((ℜ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) − ((ℑ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷))))))
181, 5crred 13971 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
199, 11crred 13971 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘(𝐶 + (i · 𝐷))) = 𝐶)
2018, 19oveq12d 6668 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℜ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) = (𝐴 · 𝐶))
211, 5crimd 13972 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
229, 11crimd 13972 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘(𝐶 + (i · 𝐷))) = 𝐷)
2321, 22oveq12d 6668 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℑ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) = (𝐵 · 𝐷))
2420, 23oveq12d 6668 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((ℜ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) − ((ℑ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷))))) = ((𝐴 · 𝐶) − (𝐵 · 𝐷)))
2517, 24eqtrd 2656 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((𝐴 · 𝐶) − (𝐵 · 𝐷)))
268, 14immuld 13959 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) + ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷))))))
2718, 22oveq12d 6668 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) = (𝐴 · 𝐷))
2821, 19oveq12d 6668 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) = (𝐵 · 𝐶))
2927, 28oveq12d 6668 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) + ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷))))) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
3026, 29eqtrd 2656 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
3130oveq2d 6666 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))) = (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶))))
3225, 31oveq12d 6668 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) + (i · (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))))) = (((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))
3316, 32eqtrd 2656 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))
3433fveq2d 6195 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶))))))
3534oveq1d 6665 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = ((abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))↑2))
368, 14absmuld 14193 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷)))))
3736oveq1d 6665 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2))
388abscld 14175 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐴 + (i · 𝐵))) ∈ ℝ)
3938recnd 10068 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐴 + (i · 𝐵))) ∈ ℂ)
4014abscld 14175 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐶 + (i · 𝐷))) ∈ ℝ)
4140recnd 10068 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐶 + (i · 𝐷))) ∈ ℂ)
4239, 41sqmuld 13020 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2) = (((abs‘(𝐴 + (i · 𝐵)))↑2) · ((abs‘(𝐶 + (i · 𝐷)))↑2)))
43 absreimsq 14032 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴↑2) + (𝐵↑2)))
44 absreimsq 14032 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((abs‘(𝐶 + (i · 𝐷)))↑2) = ((𝐶↑2) + (𝐷↑2)))
4543, 44oveqan12d 6669 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴 + (i · 𝐵)))↑2) · ((abs‘(𝐶 + (i · 𝐷)))↑2)) = (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))))
4637, 42, 453eqtrd 2660 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))))
471, 9remulcld 10070 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐶) ∈ ℝ)
485, 11remulcld 10070 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐷) ∈ ℝ)
4947, 48resubcld 10458 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · 𝐶) − (𝐵 · 𝐷)) ∈ ℝ)
501, 11remulcld 10070 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐷) ∈ ℝ)
515, 9remulcld 10070 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℝ)
5250, 51readdcld 10069 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℝ)
53 absreimsq 14032 . . 3 ((((𝐴 · 𝐶) − (𝐵 · 𝐷)) ∈ ℝ ∧ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℝ) → ((abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))↑2) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
5449, 52, 53syl2anc 693 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))↑2) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
5535, 46, 543eqtr3d 2664 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  ici 9938   + caddc 9939   · cmul 9941  cmin 10266  2c2 11070  cexp 12860  cre 13837  cim 13838  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  bhmafibid2  29645  2sqmod  29648
  Copyright terms: Public domain W3C validator