MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsp1e Structured version   Visualization version   GIF version

Theorem bitsp1e 15154
Description: The 𝑀 + 1-th bit of 2𝑁 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsp1e ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘(2 · 𝑁)) ↔ 𝑀 ∈ (bits‘𝑁)))

Proof of Theorem bitsp1e
StepHypRef Expression
1 2z 11409 . . . . 5 2 ∈ ℤ
21a1i 11 . . . 4 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3 id 22 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
42, 3zmulcld 11488 . . 3 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
5 bitsp1 15153 . . 3 (((2 · 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘(2 · 𝑁)) ↔ 𝑀 ∈ (bits‘(⌊‘((2 · 𝑁) / 2)))))
64, 5sylan 488 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘(2 · 𝑁)) ↔ 𝑀 ∈ (bits‘(⌊‘((2 · 𝑁) / 2)))))
7 zcn 11382 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
8 2cnd 11093 . . . . . . . 8 (𝑁 ∈ ℤ → 2 ∈ ℂ)
9 2ne0 11113 . . . . . . . . 9 2 ≠ 0
109a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → 2 ≠ 0)
117, 8, 10divcan3d 10806 . . . . . . 7 (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁)
1211fveq2d 6195 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘((2 · 𝑁) / 2)) = (⌊‘𝑁))
13 flid 12609 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
1412, 13eqtrd 2656 . . . . 5 (𝑁 ∈ ℤ → (⌊‘((2 · 𝑁) / 2)) = 𝑁)
1514adantr 481 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘((2 · 𝑁) / 2)) = 𝑁)
1615fveq2d 6195 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(⌊‘((2 · 𝑁) / 2))) = (bits‘𝑁))
1716eleq2d 2687 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘((2 · 𝑁) / 2))) ↔ 𝑀 ∈ (bits‘𝑁)))
186, 17bitrd 268 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘(2 · 𝑁)) ↔ 𝑀 ∈ (bits‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   / cdiv 10684  2c2 11070  0cn0 11292  cz 11377  cfl 12591  bitscbits 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fl 12593  df-seq 12802  df-exp 12861  df-bits 15144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator