| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj600 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj600.1 |
|
| bnj600.2 |
|
| bnj600.3 |
|
| bnj600.4 |
|
| bnj600.5 |
|
| bnj600.10 |
|
| bnj600.11 |
|
| bnj600.12 |
|
| bnj600.13 |
|
| bnj600.14 |
|
| bnj600.15 |
|
| bnj600.16 |
|
| bnj600.17 |
|
| bnj600.18 |
|
| bnj600.19 |
|
| bnj600.20 |
|
| bnj600.21 |
|
| bnj600.22 |
|
| bnj600.23 |
|
| bnj600.24 |
|
| bnj600.25 |
|
| bnj600.26 |
|
| Ref | Expression |
|---|---|
| bnj600 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj600.5 |
. . . . . 6
| |
| 2 | bnj600.13 |
. . . . . 6
| |
| 3 | bnj600.14 |
. . . . . 6
| |
| 4 | bnj600.17 |
. . . . . 6
| |
| 5 | bnj600.19 |
. . . . . 6
| |
| 6 | bnj600.16 |
. . . . . . 7
| |
| 7 | 6 | bnj528 30959 |
. . . . . 6
|
| 8 | bnj600.4 |
. . . . . . 7
| |
| 9 | bnj600.10 |
. . . . . . 7
| |
| 10 | bnj600.11 |
. . . . . . 7
| |
| 11 | bnj600.12 |
. . . . . . 7
| |
| 12 | vex 3203 |
. . . . . . 7
| |
| 13 | 8, 9, 10, 11, 12 | bnj207 30951 |
. . . . . 6
|
| 14 | bnj600.1 |
. . . . . . 7
| |
| 15 | 14, 2, 7 | bnj609 30987 |
. . . . . 6
|
| 16 | bnj600.2 |
. . . . . . 7
| |
| 17 | 16, 3, 7 | bnj611 30988 |
. . . . . 6
|
| 18 | bnj600.3 |
. . . . . . . . . 10
| |
| 19 | 18 | bnj168 30798 |
. . . . . . . . 9
|
| 20 | df-rex 2918 |
. . . . . . . . 9
| |
| 21 | 19, 20 | sylib 208 |
. . . . . . . 8
|
| 22 | 18 | bnj158 30797 |
. . . . . . . . . . . . . 14
|
| 23 | df-rex 2918 |
. . . . . . . . . . . . . 14
| |
| 24 | 22, 23 | sylib 208 |
. . . . . . . . . . . . 13
|
| 25 | 24 | adantr 481 |
. . . . . . . . . . . 12
|
| 26 | 25 | ancri 575 |
. . . . . . . . . . 11
|
| 27 | 26 | bnj534 30808 |
. . . . . . . . . 10
|
| 28 | bnj432 30782 |
. . . . . . . . . . 11
| |
| 29 | 28 | exbii 1774 |
. . . . . . . . . 10
|
| 30 | 27, 29 | sylibr 224 |
. . . . . . . . 9
|
| 31 | 30 | eximi 1762 |
. . . . . . . 8
|
| 32 | 21, 31 | syl 17 |
. . . . . . 7
|
| 33 | 5 | 2exbii 1775 |
. . . . . . 7
|
| 34 | 32, 33 | sylibr 224 |
. . . . . 6
|
| 35 | rsp 2929 |
. . . . . . . . 9
| |
| 36 | 1, 35 | sylbi 207 |
. . . . . . . 8
|
| 37 | 36 | 3imp 1256 |
. . . . . . 7
|
| 38 | 37, 11 | sylibr 224 |
. . . . . 6
|
| 39 | bnj600.18 |
. . . . . . 7
| |
| 40 | 14, 9, 12 | bnj523 30957 |
. . . . . . . 8
|
| 41 | 16, 10, 12 | bnj539 30961 |
. . . . . . . 8
|
| 42 | 40, 41, 18, 6, 4, 39 | bnj544 30964 |
. . . . . . 7
|
| 43 | 39, 5, 42 | bnj561 30973 |
. . . . . 6
|
| 44 | 40, 18, 6, 4, 39, 42, 15 | bnj545 30965 |
. . . . . . 7
|
| 45 | 39, 5, 44 | bnj562 30974 |
. . . . . 6
|
| 46 | bnj600.20 |
. . . . . . 7
| |
| 47 | bnj600.22 |
. . . . . . 7
| |
| 48 | bnj600.23 |
. . . . . . 7
| |
| 49 | bnj600.24 |
. . . . . . 7
| |
| 50 | bnj600.25 |
. . . . . . 7
| |
| 51 | bnj600.26 |
. . . . . . 7
| |
| 52 | bnj600.21 |
. . . . . . 7
| |
| 53 | 18, 6, 4, 39, 5, 46, 47, 48, 49, 50, 51, 40, 41, 42, 52, 43, 17 | bnj571 30976 |
. . . . . 6
|
| 54 | biid 251 |
. . . . . 6
| |
| 55 | biid 251 |
. . . . . 6
| |
| 56 | biid 251 |
. . . . . 6
| |
| 57 | biid 251 |
. . . . . 6
| |
| 58 | 1, 2, 3, 4, 5, 7, 13, 15, 17, 34, 38, 43, 45, 53, 14, 16, 54, 55, 56, 57 | bnj607 30986 |
. . . . 5
|
| 59 | 14, 16, 18 | bnj579 30984 |
. . . . . . 7
|
| 60 | 59 | a1d 25 |
. . . . . 6
|
| 61 | 60 | 3ad2ant2 1083 |
. . . . 5
|
| 62 | 58, 61 | jcad 555 |
. . . 4
|
| 63 | eu5 2496 |
. . . 4
| |
| 64 | 62, 63 | syl6ibr 242 |
. . 3
|
| 65 | 64, 8 | sylibr 224 |
. 2
|
| 66 | 65 | 3expib 1268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-bnj17 30753 df-bnj14 30755 df-bnj13 30757 df-bnj15 30759 |
| This theorem is referenced by: bnj601 30990 |
| Copyright terms: Public domain | W3C validator |