Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj600 Structured version   Visualization version   Unicode version

Theorem bnj600 30989
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj600.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj600.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj600.3  |-  D  =  ( om  \  { (/)
} )
bnj600.4  |-  ( ch  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
) )
bnj600.5  |-  ( th  <->  A. m  e.  D  ( m  _E  n  ->  [. m  /  n ]. ch ) )
bnj600.10  |-  ( ph'  <->  [. m  /  n ]. ph )
bnj600.11  |-  ( ps'  <->  [. m  /  n ]. ps )
bnj600.12  |-  ( ch'  <->  [. m  /  n ]. ch )
bnj600.13  |-  ( ph"  <->  [. G  / 
f ]. ph )
bnj600.14  |-  ( ps"  <->  [. G  / 
f ]. ps )
bnj600.15  |-  ( ch"  <->  [. G  / 
f ]. ch )
bnj600.16  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
bnj600.17  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj600.18  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
bnj600.19  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
bnj600.20  |-  ( ze  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =  suc  i ) )
bnj600.21  |-  ( rh  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
) )
bnj600.22  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
bnj600.23  |-  C  = 
U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
bnj600.24  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
bnj600.25  |-  L  = 
U_ y  e.  ( G `  p ) 
pred ( y ,  A ,  R )
bnj600.26  |-  G  =  ( f  u.  { <. m ,  C >. } )
Assertion
Ref Expression
bnj600  |-  ( n  =/=  1o  ->  (
( n  e.  D  /\  th )  ->  ch ) )
Distinct variable groups:    A, f,
i, m, n, p   
y, A, f, i, n, p    D, f, p    i, G, y    R, f, i, m, n, p    y, R    et, f, i    x, f, m, n, p    i, ph', p    ph, m, p    ps, m, p    th, p
Allowed substitution hints:    ph( x, y, f, i, n)    ps( x, y, f, i, n)    ch( x, y, f, i, m, n, p)    th( x, y, f, i, m, n)    ta( x, y, f, i, m, n, p)    et( x, y, m, n, p)    ze( x, y, f, i, m, n, p)    si( x, y, f, i, m, n, p)    rh( x, y, f, i, m, n, p)    A( x)    B( x, y, f, i, m, n, p)    C( x, y, f, i, m, n, p)    D( x, y, i, m, n)    R( x)    G( x, f, m, n, p)    K( x, y, f, i, m, n, p)    L( x, y, f, i, m, n, p)    ph'( x, y, f, m, n)    ps'( x, y, f, i, m, n, p)    ch'( x, y, f, i, m, n, p)    ph"( x, y, f, i, m, n, p)    ps"( x, y, f, i, m, n, p)    ch"( x, y, f, i, m, n, p)

Proof of Theorem bnj600
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bnj600.5 . . . . . 6  |-  ( th  <->  A. m  e.  D  ( m  _E  n  ->  [. m  /  n ]. ch ) )
2 bnj600.13 . . . . . 6  |-  ( ph"  <->  [. G  / 
f ]. ph )
3 bnj600.14 . . . . . 6  |-  ( ps"  <->  [. G  / 
f ]. ps )
4 bnj600.17 . . . . . 6  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
5 bnj600.19 . . . . . 6  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
6 bnj600.16 . . . . . . 7  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
76bnj528 30959 . . . . . 6  |-  G  e. 
_V
8 bnj600.4 . . . . . . 7  |-  ( ch  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
) )
9 bnj600.10 . . . . . . 7  |-  ( ph'  <->  [. m  /  n ]. ph )
10 bnj600.11 . . . . . . 7  |-  ( ps'  <->  [. m  /  n ]. ps )
11 bnj600.12 . . . . . . 7  |-  ( ch'  <->  [. m  /  n ]. ch )
12 vex 3203 . . . . . . 7  |-  m  e. 
_V
138, 9, 10, 11, 12bnj207 30951 . . . . . 6  |-  ( ch'  <->  (
( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  m  /\  ph'  /\  ps' ) ) )
14 bnj600.1 . . . . . . 7  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
1514, 2, 7bnj609 30987 . . . . . 6  |-  ( ph"  <->  ( G `  (/) )  =  pred ( x ,  A ,  R ) )
16 bnj600.2 . . . . . . 7  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
1716, 3, 7bnj611 30988 . . . . . 6  |-  ( ps"  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( G `
 suc  i )  =  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) )
18 bnj600.3 . . . . . . . . . 10  |-  D  =  ( om  \  { (/)
} )
1918bnj168 30798 . . . . . . . . 9  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  D  n  =  suc  m )
20 df-rex 2918 . . . . . . . . 9  |-  ( E. m  e.  D  n  =  suc  m  <->  E. m
( m  e.  D  /\  n  =  suc  m ) )
2119, 20sylib 208 . . . . . . . 8  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m ( m  e.  D  /\  n  =  suc  m ) )
2218bnj158 30797 . . . . . . . . . . . . . 14  |-  ( m  e.  D  ->  E. p  e.  om  m  =  suc  p )
23 df-rex 2918 . . . . . . . . . . . . . 14  |-  ( E. p  e.  om  m  =  suc  p  <->  E. p
( p  e.  om  /\  m  =  suc  p
) )
2422, 23sylib 208 . . . . . . . . . . . . 13  |-  ( m  e.  D  ->  E. p
( p  e.  om  /\  m  =  suc  p
) )
2524adantr 481 . . . . . . . . . . . 12  |-  ( ( m  e.  D  /\  n  =  suc  m )  ->  E. p ( p  e.  om  /\  m  =  suc  p ) )
2625ancri 575 . . . . . . . . . . 11  |-  ( ( m  e.  D  /\  n  =  suc  m )  ->  ( E. p
( p  e.  om  /\  m  =  suc  p
)  /\  ( m  e.  D  /\  n  =  suc  m ) ) )
2726bnj534 30808 . . . . . . . . . 10  |-  ( ( m  e.  D  /\  n  =  suc  m )  ->  E. p ( ( p  e.  om  /\  m  =  suc  p )  /\  ( m  e.  D  /\  n  =  suc  m ) ) )
28 bnj432 30782 . . . . . . . . . . 11  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p )  <->  ( (
p  e.  om  /\  m  =  suc  p )  /\  ( m  e.  D  /\  n  =  suc  m ) ) )
2928exbii 1774 . . . . . . . . . 10  |-  ( E. p ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p )  <->  E. p
( ( p  e. 
om  /\  m  =  suc  p )  /\  (
m  e.  D  /\  n  =  suc  m ) ) )
3027, 29sylibr 224 . . . . . . . . 9  |-  ( ( m  e.  D  /\  n  =  suc  m )  ->  E. p ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
3130eximi 1762 . . . . . . . 8  |-  ( E. m ( m  e.  D  /\  n  =  suc  m )  ->  E. m E. p ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
3221, 31syl 17 . . . . . . 7  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m E. p
( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p
) )
3352exbii 1775 . . . . . . 7  |-  ( E. m E. p et  <->  E. m E. p ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
3432, 33sylibr 224 . . . . . 6  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m E. p et )
35 rsp 2929 . . . . . . . . 9  |-  ( A. m  e.  D  (
m  _E  n  ->  [. m  /  n ]. ch )  ->  (
m  e.  D  -> 
( m  _E  n  ->  [. m  /  n ]. ch ) ) )
361, 35sylbi 207 . . . . . . . 8  |-  ( th 
->  ( m  e.  D  ->  ( m  _E  n  ->  [. m  /  n ]. ch ) ) )
37363imp 1256 . . . . . . 7  |-  ( ( th  /\  m  e.  D  /\  m  _E  n )  ->  [. m  /  n ]. ch )
3837, 11sylibr 224 . . . . . 6  |-  ( ( th  /\  m  e.  D  /\  m  _E  n )  ->  ch' )
39 bnj600.18 . . . . . . 7  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
4014, 9, 12bnj523 30957 . . . . . . . 8  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
4116, 10, 12bnj539 30961 . . . . . . . 8  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
4240, 41, 18, 6, 4, 39bnj544 30964 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
4339, 5, 42bnj561 30973 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  G  Fn  n )
4440, 18, 6, 4, 39, 42, 15bnj545 30965 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  ph" )
4539, 5, 44bnj562 30974 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  ph" )
46 bnj600.20 . . . . . . 7  |-  ( ze  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =  suc  i ) )
47 bnj600.22 . . . . . . 7  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
48 bnj600.23 . . . . . . 7  |-  C  = 
U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
49 bnj600.24 . . . . . . 7  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
50 bnj600.25 . . . . . . 7  |-  L  = 
U_ y  e.  ( G `  p ) 
pred ( y ,  A ,  R )
51 bnj600.26 . . . . . . 7  |-  G  =  ( f  u.  { <. m ,  C >. } )
52 bnj600.21 . . . . . . 7  |-  ( rh  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
) )
5318, 6, 4, 39, 5, 46, 47, 48, 49, 50, 51, 40, 41, 42, 52, 43, 17bnj571 30976 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  ps" )
54 biid 251 . . . . . 6  |-  ( [. z  /  f ]. ph  <->  [. z  / 
f ]. ph )
55 biid 251 . . . . . 6  |-  ( [. z  /  f ]. ps  <->  [. z  /  f ]. ps )
56 biid 251 . . . . . 6  |-  ( [. G  /  z ]. [. z  /  f ]. ph  <->  [. G  / 
z ]. [. z  / 
f ]. ph )
57 biid 251 . . . . . 6  |-  ( [. G  /  z ]. [. z  /  f ]. ps  <->  [. G  /  z ]. [. z  /  f ]. ps )
581, 2, 3, 4, 5, 7, 13, 15, 17, 34, 38, 43, 45, 53, 14, 16, 54, 55, 56, 57bnj607 30986 . . . . 5  |-  ( ( n  =/=  1o  /\  n  e.  D  /\  th )  ->  ( ( R  FrSe  A  /\  x  e.  A )  ->  E. f
( f  Fn  n  /\  ph  /\  ps )
) )
5914, 16, 18bnj579 30984 . . . . . . 7  |-  ( n  e.  D  ->  E* f ( f  Fn  n  /\  ph  /\  ps ) )
6059a1d 25 . . . . . 6  |-  ( n  e.  D  ->  (
( R  FrSe  A  /\  x  e.  A
)  ->  E* f
( f  Fn  n  /\  ph  /\  ps )
) )
61603ad2ant2 1083 . . . . 5  |-  ( ( n  =/=  1o  /\  n  e.  D  /\  th )  ->  ( ( R  FrSe  A  /\  x  e.  A )  ->  E* f ( f  Fn  n  /\  ph  /\  ps ) ) )
6258, 61jcad 555 . . . 4  |-  ( ( n  =/=  1o  /\  n  e.  D  /\  th )  ->  ( ( R  FrSe  A  /\  x  e.  A )  ->  ( E. f ( f  Fn  n  /\  ph  /\  ps )  /\  E* f
( f  Fn  n  /\  ph  /\  ps )
) ) )
63 eu5 2496 . . . 4  |-  ( E! f ( f  Fn  n  /\  ph  /\  ps )  <->  ( E. f
( f  Fn  n  /\  ph  /\  ps )  /\  E* f ( f  Fn  n  /\  ph  /\ 
ps ) ) )
6462, 63syl6ibr 242 . . 3  |-  ( ( n  =/=  1o  /\  n  e.  D  /\  th )  ->  ( ( R  FrSe  A  /\  x  e.  A )  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )
6564, 8sylibr 224 . 2  |-  ( ( n  =/=  1o  /\  n  e.  D  /\  th )  ->  ch )
66653expib 1268 1  |-  ( n  =/=  1o  ->  (
( n  e.  D  /\  th )  ->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   E*wmo 2471    =/= wne 2794   A.wral 2912   E.wrex 2913   [.wsbc 3435    \ cdif 3571    u. cun 3572   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520   class class class wbr 4653    _E cep 5028   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065   1oc1o 7553    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj601  30990
  Copyright terms: Public domain W3C validator